
Document Number: MD00012
Revision 02.08
May 28, 2002

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

MIPS64™ 5K™ Processor Core Family Software
User’s Manual

Copyright © 1999-2002 MIPS Technologies, Inc. All rights reserved.

Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, reproducing, modifying, or use of this information (in whole or in part) which is not expressly permitted in
writing by MIPS Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this
information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in
this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
the application or use of this information, or of any error of omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness
for a particular purpose, are excluded. Any license under patent rights or any other intellectual property rights owned by
MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third party
in a separate license agreement between the parties.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in
violation of any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or any contractually-authorized third party.

MIPS®, R3000®, R4000®, R5000® and R10000® are among the registered trademarks of MIPS Technologies, Inc. in
the United States and certain other countries, and MIPS16™, MIPS16e™,MIPS32™, MIPS64™, MIPS-3D™,
MIPS-based™, MIPS I™, MIPS II™, MIPS III™, MIPS IV™, MIPS V™, MDMX™, SmartMIPS™, 4K™, 4Kc™,
4Km™, 4Kp™, 4KE™, 4KEc™, 4KEm™, 4KEp™, 4KS™, 4KSc™, 5K™, 5Kc™, 5Kf™, 20K™, 20Kc™, R20K™,
R4300™, ATLAS™, CoreLV™, EC™, JALGO™, MALTA™, MGB™, SEAD™, SEAD-2™, SOC-it™ and
YAMON™ are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

01.04-2B MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

.37
.38
.38
..
Table of Contents

Chapter 1 Introduction ..1
1.1 Overview ...1
1.2 Features ...2
1.3 Core Block Diagram ...4

1.3.1 Execution Unit ..4
1.3.2 Floating Point Unit (FPU) / Coprocessor 1 (5Kf core only) ...5
1.3.3 Multiply/Divide Unit (MDU) ...5
1.3.4 System Control Coprocessor (CP0) ..6
1.3.5 Memory Management Unit (MMU) ...6
1.3.6 Cache Controllers & Bus Interface ...6
1.3.7 Power Management ..6
1.3.8 Instruction and Data Caches ...6
1.3.9 EJTAG Debug Support ...7

Chapter 2 Pipeline ...9
2.1 Pipeline Stages ..9

2.1.1 I Stage: Instruction Fetch ..10
2.1.2 D Stage: Instruction Dispatch ...10
2.1.3 R Stage: Register File Read ..10
2.1.4 E Stage: Execution ..10
2.1.5 M Stage: Memory Access ...11
2.1.6 W Stage: Writeback ..11

2.2 Instruction Fetch ...11
2.3 Branch Delay ...12
2.4 Limited Dual Issue ..13
2.5 Instruction Fetching from Uncached Memory Space ...15
2.6 Data Access ...16
2.7 Instruction Scheduling ..16
2.8 MDU Pipeline ...16

2.8.1 Multiply/MAC Operations ..16
2.8.2 Divide Operations ...18
2.8.3 Latencies and Repeat Rates ..19
2.8.4 MDU Interaction with Integer Unit Pipeline ..20

2.9 Slip Conditions and Interlock Handling ..21

Chapter 3 Floating-Point Unit ...27
3.1 Features Overview ..27

3.1.1 IEEE Standard 754 ..28
3.2 Enabling the Floating-Point Coprocessor ...28
3.3 Data Formats ...28

3.3.1 Floating-Point Formats ...29
3.3.2 Fixed-Point Formats ...32

3.4 Floating-Point General Registers ..32
3.4.1 FPRs and Formatted Operand Layout ...33
3.4.2 Formats of Values Used in FP Registers ..33
3.4.3 Binary Data Transfers (32-Bit and 64-Bit) ...34

3.5 Floating-Point Control Registers ..35
3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0) ..
3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25) ...
3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26) ..
3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28) ..39
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 iii

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

..39

.
...72
.

3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)
3.5.6 Operation of the FS/FO/FN Bits ...41
3.5.7 FCSR Cause Bit Update Flow ..44

3.6 Instruction Overview ...45
3.6.1 Data Transfer Instructions ...45
3.6.2 Arithmetic Instructions ...47
3.6.3 Conversion Instructions ..48
3.6.4 Formatted Operand-Value Move Instructions ..49
3.6.5 Conditional Branch Instructions ...50
3.6.6 Miscellaneous Instructions ..51

3.7 Exceptions ...51
3.7.1 Precise Exception Mode ...51
3.7.2 Exception Conditions ..52

3.8 Pipeline and Performance ...54
3.8.1 Pipeline Overview ...54
3.8.2 Bypassing ..56
3.8.3 Repeat Rate and Latency ..56

Chapter 4 Memory Management ...59
4.1 Introduction ...59
4.2 TLB Organization ...59

4.2.1 PageMask Field ...60
4.2.2 ASID, GLOBAL, and R Bits ..60
4.2.3 Dirty Bit ..61
4.2.4 Cache/Coherency Attributes ...61

4.3 Address Translation ..61
4.4 TLB Implementation Details ..63
4.5 TLB Management Instructions ...64

4.5.1 TLBWI - TLB Write Indexed ...64
4.5.2 TLBWR - TLB Write Random ...65
4.5.3 TLBP - TLB Probe ..65
4.5.4 TLBR - TLB Read Indexed ..65

4.6 TLB Exceptions ..65
4.6.1 TLB Refill Exception ..66
4.6.2 TLB Invalid Exception ...66
4.6.3 TLB Modified Exception ..66
4.6.4 Machine Check (TLB Shutdown) ...66

4.7 TLB Memory Maps ..67
4.7.1 Access Control as a Function of Address and Operating Mode ..70
4.7.2 Address Translation and Cache Coherency Attributes for kseg0 and kseg1 ...
4.7.3 Address Translation and Cache Coherency Attributes for xkphys ..72
4.7.4 Address Translation for kuseg when StatusERL = 1 ..74
4.7.5 Address Translation in Debug Mode ..75

4.8 FMT Memory Maps ..75
4.8.1 User Mode (useg/suseg/kuseg) ...75
4.8.2 Supervisor Mode (sseg) ..76
4.8.3 Kernel Mode (kseg0, kseg1 and kseg3) ..76
4.8.4 Debug Mode ..77

Chapter 5 Exception Processing ..79
5.1 Overview ...79

5.1.1 Interrupt and NMI Latency ...81
5.1.2 Exception Vector Locations ..81
5.1.3 EPC, ErrorEPC, and DEPC Values ..82
5.1.4 General Exception Processing ..82

5.2 Reset Exception ...83
iv MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

.

5.3 Soft Reset Exception ...84
5.4 Non-maskable Interrupt (NMI) Exception ..85
5.5 Machine Check Exception ..86
5.6 Address Error Exception ...86
5.7 TLB and XTLB Refill Exceptions ..87
5.8 TLB Invalid Exception ..88
5.9 TLB Modified Exception ..89
5.10 Cache Error Exception ..89
5.11 Bus Error Exception ..90
5.12 Integer Overflow Exception ..91
5.13 Trap Exception ..91
5.14 System Call Exception ..91
5.15 Breakpoint Exception ..92
5.16 Reserved Instruction Exception ..92
5.17 Coprocessor Unusable Exception ...92
5.18 MDMX Coprocessor Unusable Exception ...93
5.19 Floating-Point Exception ..93
5.20 Coprocessor 2 Exception ..94
5.21 Watch Exception ...94
5.22 Interrupt Exception ...94
5.23 Debug Exceptions ...96

5.23.1 Exception Handling of Debug Exceptions ..96
5.23.2 Debug Breakpoint Exception ..97
5.23.3 Debug Instruction Break Exception ..97
5.23.4 Debug Data Break Load/Store Exception ...97
5.23.5 Debug Data Break Load Imprecise Exception ..98
5.23.6 Debug Single Step Exception ...98
5.23.7 Debug Interrupt Exception ..99
5.23.8 Handling of Exceptions in Debug Mode ..99
5.23.9 EJTAG Boot ..101

Chapter 6 Coprocessor 0 Registers ...103
6.1 Index Register (CP0 Register 0, Select 0) ...105
6.2 Random Register (CP0 Register 1, Select 0) ..105
6.3 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0) ..106
6.4 Context Register (CP0 Register 4, Select 0) ...107
6.5 PageMask Register (CP0 Register 5, Select 0) ...108
6.6 Wired Register (CP0 Register 6, Select 0) ..109
6.7 BadVAddr Register (CP0 Register 8, Select 0) ..110
6.8 Count Register (CP0 Register 9, Select 0) ..111
6.9 EntryHi Register (CP0 Register 10, Select 0) ...111
6.10 Compare Register (CP0 Register 11, Select 0) ...112
6.11 Status Register (CP Register 12, Select 0) ..113
6.12 Cause Register (CP0 Register 13, Select 0) ..117
6.13 Exception Program Counter (CP0 Register 14, Select 0) ...119
6.14 Processor Identification (CP0 Register 15, Select 0) ..119
6.15 Configuration Register (CP0 Register 16, Select 0) ...120
6.16 Configuration Register 1 (CP0 Register 16, Select 1) ..121
6.17 WatchLo Register (CP0 Register 18) ..123
6.18 WatchHi Register (CP0 Register 19) ..124
6.19 XContext Register (CP0 Register 20, Select 0) ..125
6.20 Debug Register (CP0 Register 23, Select 0) ...126
6.21 Debug Exception Program Counter Register (CP0 Register 24, Select 0) ..129
6.22 Performance Counter Register (CP0 Register 25, select 0-3) ...130
6.23 ErrCtl Register (CP0 Register 26, Select 0) ..134
6.24 CacheErr Register (CP0 Register 27, Select 0) ...135
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 v

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.25 TagLo Register (CP0 Register 28, Select 0) ...137
6.26 DataLo Register (CP0 Register 28, Select 1) ..137
6.27 TagHi Register (CP0 Register 29, Select 0) ...138
6.28 DataHi Register (CP0 Register 29, Select 1) ..139
6.29 ErrorEPC (CP0 Register 30, Select 0) ..139
6.30 Debug Exception SAVE (DESAVE) (CP0 register 31) ...140

Chapter 7 Hardware and Software Initialization ...141
7.1 Hardware-Initialized Processor State ..141

7.1.1 Coprocessor 0 State ...141
7.1.2 TLB Initialization ..141
7.1.3 Bus State Machines ...141
7.1.4 Static Configuration Inputs ...141
7.1.5 Fetch Address ..141

7.2 Software-Initialized Processor State ...142
7.2.1 Coprocessor 0 Registers ..142
7.2.2 Register File ..142
7.2.3 TLB ...142
7.2.4 Caches ...142

Chapter 8 Cache Organization and Operation ...143
8.1 Introduction ...143
8.2 Cache Organization ...144

8.2.1 Instruction Cache Access ..146
8.2.2 Data Cache Access ..147

8.3 Cache Write Policies ...148
8.3.1 Write Through, No Write Allocate ...148
8.3.2 Write Through, Write Allocate ...148
8.3.3 Write Back, Write Allocate ...149
8.3.4 Uncached ...149

8.4 Cached Loads and Fetches ..149
8.5 Uncached Loads and Fetches ..149
8.6 Way Selection Algorithm ..149
8.7 Write Buffer ..150
8.8 Read Buffer ...151
8.9 Transaction Priority ...151
8.10 CACHE Instruction ...151
8.11 PREF and PREFX Instructions ...152
8.12 Error Handling ..153

8.12.1 Parity ...153
8.12.2 WS Field Error ..154
8.12.3 Bus Errors ...155

Chapter 9 Power Management ..157
9.1 Register-Controlled Power Management ..157
9.2 Instruction-Controlled Power Management ..157

Chapter 10 EJTAG Debug Features ..159
10.1 Introduction ...159

10.1.1 EJTAG Components and Options ...159
10.1.2 Register and Memory Map Overview ...161
10.1.3 Register Field Notations ...162

10.2 EJTAG Processor Extensions ...162
10.2.1 Debug Exceptions ...162
10.2.2 Debug Mode Execution ..163
10.2.3 Debug Mode Handling of Processor Resources ...163
10.2.4 EJTAG Coprocessor 0 Registers ..165
vi MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

202

20
10.2.5 Debug Mode Address Space ...166
10.2.6 Interrupts and NMIs ..168
10.2.7 Reset and Soft Reset of Processor ..168

10.3 Debug Control Register ..169
10.4 Hardware Breakpoints ...171

10.4.1 Introduction ...171
10.4.2 Overview of Instruction and Data Breakpoint Registers ..172
10.4.3 Conditions for Matching Breakpoints ...173
10.4.4 Debug Exceptions from Breakpoints ..177
10.4.5 Breakpoints Used as Triggerpoints ...179
10.4.6 Instruction Breakpoint Registers ...180
10.4.7 Data Breakpoint Registers ..183

10.5 EJTAG Test Access Port ...188
10.5.1 Instruction Register and Special Instructions ...188
10.5.2 TAP Data Registers ...190
10.5.3 Example of EJTAG Memory Access through Processor Access ...

Chapter 11 Instruction Set Overview ..205
11.1 CPU Instruction Formats ..205
11.2 Load and Store Instructions ..206

11.2.1 Scheduling a Load Delay Slot ...206
11.2.2 Access Types ..206

11.3 Computational Instructions ...208
11.3.1 Cycle Timing for Multiply and Divide Instructions ...209

11.4 Jump and Branch Instructions ...209
11.4.1 Jump Instructions ..209
11.4.2 Branch Instructions ...209

11.5 Control Instructions ...210
11.6 Coprocessor Instructions ...210
11.7 Enhancements to the MIPS Architecture ..210

11.7.1 CLO - Count Leading Ones ..210
11.7.2 DCLO - Double Count Leading Ones ..210
11.7.3 CLZ - Count Leading Zeros ..210
11.7.4 DCLZ - Double Count Leading Zeros ..211
11.7.5 MADD - Multiply and Add Word ..211
11.7.6 MADDU - Multiply and Add Unsigned Word ...211
11.7.7 MSUB - Multiply and Subtract Word ...211
11.7.8 MSUBU - Multiply and Subtract Unsigned Word ...211
11.7.9 MUL - Multiply Word ..212

Chapter 12 Instructions ...213
12.1 Example Instruction Page ..213

12.1.1 Instruction Descriptive Name and Mnemonic ..214
12.1.2 Instruction Fields ..214
12.1.3 Format Field ..215
12.1.4 Purpose Field ..215
12.1.5 Description Field ...215
12.1.6 Restrictions Field ..216
12.1.7 Operation Field ...216
12.1.8 Exceptions Field ..216

12.2 Coprocessor 0 (CP0) Hazards ...216
12.2.1 Hazards on CACHE Instructions Modifying Instruction Cache Contents ...2

12.3 Instruction Summary ...220
12.3.1 Basic Instructions ..220
12.3.2 FPU Instructions ...227

12.4 Instruction Bit Encodings ..228
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 vii

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set ...233

Appendix A Revision History ...511
viii MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

....
List of Figures

Figure 1-1: 5Kc Core Block Diagram ..4
Figure 1-2: 5Kf Core Block Diagram...4
Figure 2-1: Pipeline Stages...10
Figure 2-2: Correctly-predicted Branch ...12
Figure 2-3: Mispredicted Branch..12
Figure 2-4: Taken Branch/Jump at Even Address Jumps to Instruction at Odd Address ..13
Figure 2-5: Not-taken Branch At Even Address ..13
Figure 2-6: Instruction Fetching from Uncached Memory Space..15
Figure 2-7: MDU Pipeline Flow During a 32x16 Multiply Operation ..17
Figure 2-8: MDU Pipeline Flow During a 32x32 Multiply Operation ..18
Figure 2-9: MDU Pipeline Flow During a 64x64 Multiply Operation ..18
Figure 2-10: MDU Pipeline Flow During a 32-bit Divide Operation ..19
Figure 2-11: MDU Pipeline Flow During a 64-bit Divide Operation ..19
Figure 2-12: Integer Pipeline and MDU Pipeline Interaction ..21
Figure 2-13: Pipeline Slip...22
Figure 3-1: FPU Block Diagram ..28
Figure 3-2: Single-Precision Floating-Point Format (S) ..29
Figure 3-3: Double-Precision Floating-Point Format (D) ..30
Figure 3-4: Word Fixed-Point Format (W) ..32
Figure 3-5: Longword Fixed-Point Format (L) ..32
Figure 3-6: Single Floating-Point or Word Fixed-Point Operand in an FPR...33
Figure 3-7: Double Floating-Point or Longword Fixed-Point Operand in an FPR..33
Figure 3-8: Effect of FPU Operations on the Format of Values Held in FPRs..34
Figure 3-9: FPU Word Load and Move-to Operations ..35
Figure 3-10: FPU Doubleword Load and Move-to Operations..35
Figure 3-11: FIR Format ..37
Figure 3-12: FCCR Format ..38
Figure 3-13: FEXR Format ..38
Figure 3-14: FENR Format ..39
Figure 3-15: FCSR Format...40
Figure 3-16: FS/FO/FN Bits Influence on Multiply and Addition Results ..42
Figure 3-17: Flushing to Nearest when Rounding Mode is Round to Nearest ..43
Figure 3-18: FPU Pipeline..55
Figure 3-19: Arithmetic Pipeline Bypass Paths..56
Figure 4-1: TLB Entry Format ...60
Figure 4-2: Overview of Virtual-to-Physical Address Translation ..62
Figure 4-3: 64-bit Virtual Address Translation ..63
Figure 4-4: TLB Address Translation and Exception Conditions..67
Figure 4-5: Virtual Address Spaces..68
Figure 4-6: Address Interpretation for xkphys Segment ..72
Figure 4-7: FMT Memory Map (ERL=0) ..76
Figure 4-8: FMT Memory Map (ERL=1) ..77
Figure 6-1: Index Register..105
Figure 6-2: Random Register ...106
Figure 6-3: EntryLo0, EntryLo1 Register ..106
Figure 6-4: Context Register ..107
Figure 6-5: PageMask Register ..108
Figure 6-6: Wired and Random TLB Entries ...109
Figure 6-7: Wired Register ...110
Figure 6-8: BadVAddr Register ...110
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 ix

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.MIPS TECHNOLOGIES PROPRIETARY / RESTRICTED

Figure 6-9: Count Register ...111
Figure 6-10: EntryHi Register ..111
Figure 6-11: Compare Register ..112
Figure 6-12: Status Register ...114
Figure 6-13: Cause Register ...117
Figure 6-14: EPC Register..119
Figure 6-15: PRId Register...119
Figure 6-16: Config Register..120
Figure 6-17: Config1 Register..122
Figure 6-18: WatchLo Register ..124
Figure 6-19: WatchHi Register ..124
Figure 6-20: XContext Register Format...125
Figure 6-21: Debug Register ..126
Figure 6-22: DEPC Register...130
Figure 6-23: Performance Counter Control Register ...131
Figure 6-24: Performance Counter Count Register..133
Figure 6-25: ErrCtl Register ...134
Figure 6-26: CacheErr Register..135
Figure 6-27: TagLo Register ..137
Figure 6-28: DataLo Register ...138
Figure 6-29: TagHi Register...138
Figure 6-30: DataHi Register ...139
Figure 6-31: ErrorEPC Register ...139
Figure 6-32: DESAVE Register ...140
Figure 8-1: 5K Cache Subsystem Organization ...144
Figure 8-2: Cache RAM Formats ...144
Figure 8-3: Cache Data and Tag Indexing ...145
Figure 8-4: Way Selection Indexing...146
Figure 8-5: Example of Instruction Fetch with ITLB Hit and Cache Hit ..147
Figure 8-6: Example of Data Load with DTLB Hit and Cache Hit ...148
Figure 10-1: Simplified Block Diagram of EJTAG Components ..160
Figure 10-2: DCR Register Format ..170
Figure 10-3: Instruction Breakpoint ...172
Figure 10-4: Data Breakpoint ...172
Figure 10-5: IBS Register Format ..180
Figure 10-6: IBAn Register Format ...181
Figure 10-7: IBMn Register Format...181
Figure 10-8: IBASIDn Register Format ...182
Figure 10-9: IBCn Register Format..183
Figure 10-10: DBS Register Format...184
Figure 10-11: DBAn Register Format..185
Figure 10-12: DBMn Register Format ...185
Figure 10-13: DBASIDn Register Format ...186
Figure 10-14: DBCn Register Format ..186
Figure 10-15: DBVn Register Format..187
Figure 10-16: Selected Registers when ALL Instruction is Selected...189
Figure 10-17: Selected Registers when FASTDATA Instruction is Selected..189
Figure 10-18: Device ID Register Format..191
Figure 10-19: Implementation Register Format ...192
Figure 10-20: Data Register Format...193
Figure 10-21: Address Register Format ...196
Figure 10-22: EJTAG Control Register Format...196
Figure 10-23: Fastdata Register Format ...200
Figure 10-24: Bypass Register Format...201
Figure 10-25: Write Processor Access Example ..203
x MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.MIPS TECHNOLOGIES PROPRIETARY / RESTRICTED

Figure 10-26: Read Processor Access Example...204
Figure 11-1: CPU Instruction Formats ...206
Figure 12-1: Example Instruction Description ...214
Figure 12-2: Example of Instruction Fields..215
Figure 12-3: Sample Bit Encoding Table...229
Figure 12-4: Usage of Address Fields to Select Index and Way..287
Figure 12-5: Unaligned Doubleword Load Using LDL and LDR ...355
Figure 12-6: Bytes Loaded by LDL Instruction ...356
Figure 12-7: Unaligned Doubleword Load Using LDR and LDL ...357
Figure 12-8: Bytes Loaded by LDR Instruction...358
Figure 12-9: Unaligned Word Load Using LWL and LWR ..372
Figure 12-10: Bytes Loaded by LWL Instruction ..373
Figure 12-11: Unaligned Word Load Using LWL and LWR ..376
Figure 12-12: Bytes Loaded by LWL Instruction ..377
Figure 12-13: Unaligned Doubleword Store With SDL and SDR...449
Figure 12-14: Bytes Stored by an SDL Instruction ..450
Figure 12-15: Unaligned Doubleword Store With SDR and SDL ...452
Figure 12-16: Bytes Stored by an SDR Instruction..453
Figure 12-17: Unaligned Word Store Using SWL and SWR...476
Figure 12-18: Bytes Stored by an SWL Instruction ...477
Figure 12-19: Unaligned Word Store Using SWR and SWL...478
Figure 12-20: Bytes Stored by SWR Instruction..479
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 xi

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.MIPS TECHNOLOGIES PROPRIETARY / RESTRICTED

xii MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.MIPS TECHNOLOGIES PROPRIETARY / RESTRICTED

......42

.......
List of Tables

Table 2-1: Arithmetic Coprocessor Instructions which can be Dual Issued ..13
Table 2-2: Non-Arithmetic Instructions which can be Dual Issued ...14
Table 2-3: 5K Core Instruction Latencies ..19
Table 2-4: 5K Core Instruction Repeat Rates...20
Table 2-5: Pipeline Interlocks ..22
Table 2-6: Instruction Interlocks ..23
Table 3-1: Parameters of Floating-Point Data Types ...29
Table 3-2: Value of Single or Double Floating-Point Data Type Encoding ..30
Table 3-3: Value Supplied When a New Quiet NaN is Created ..32
Table 3-4: Coprocessor 1 Register Summary...36
Table 3-5: Read/Write Properties...36
Table 3-6: FIR Bit Field Descriptions ..37
Table 3-7: FCCR Bit Field Descriptions ..38
Table 3-8: FEXR Bit Field Descriptions ..38
Table 3-9: FENR Bit Field Descriptions ..39
Table 3-10: FCSR Bit Field Descriptions ..40
Table 3-11: Cause, Enables, and Flags Definitions..41
Table 3-12: Rounding Mode Definitions ...41
Table 3-13: Zero Flushing for Tiny Results ...42
Table 3-14: Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting
Table 3-15: Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings...43
Table 3-16: Handling of Tiny Final Result Based on FN and FS Bit Settings ..43
Table 3-17: Recommended FS/FO/FN Settings...44
Table 3-18: FPU Data Transfer Instructions ..46
Table 3-19: FPU Loads and Stores Using Register+Offset Address Mode ...46
Table 3-20: FPU Loads and Stores Using Register+Register Address Mode..46
Table 3-21: FPU Move To and From Instructions ...47
Table 3-22: FPU IEEE Arithmetic Operations...47
Table 3-23: FPU-Approximate Arithmetic Operations..48
Table 3-24: FPU Multiply-Accumulate Arithmetic Operations...48
Table 3-25: Supported Operand Range for Convert Instructions...48
Table 3-26: FPU Conversion Operations Using the FCSR Rounding Mode...49
Table 3-27: FPU Conversion Operations Using a Directed Rounding Mode ..49
Table 3-28: FPU Formatted Operand Move Instruction ..50
Table 3-29: FPU Conditional Move on True/False Instructions ..50
Table 3-30: FPU Conditional Move on Zero/Non-Zero Instructions...50
Table 3-31: FPU Conditional Branch Instructions...50
Table 3-32: Deprecated FPU Conditional Branch Likely Instructions ..51
Table 3-33: CPU Conditional Move on FPU True/False Instructions ...51
Table 3-34: Result for Exceptions Not Trapped...52
Table 3-35: 5Kf Core FPU Latency and Repeat Rate ..56
Table 4-1: Physical Address Generation ..63
Table 4-2: TLB Exceptions ..65
Table 4-3: Virtual Address Spaces ..69
Table 4-4: Address Space Access and TLB Refill Selection as a Function of Operating Mode70
Table 4-5: Address Translation and Cache Attributes for kseg0 and kseg1 ..72
Table 4-6: Address Translation and Cache Attributes for xkphys ...73
Table 4-7: Physical Address and Cache Attribute for dseg..75
Table 4-8: CPU Access to dseg Address Range...75
Table 5-1: Priority of Exceptions ...79
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 xiii

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Table 5-2: Exception Vector Base Addresses ..81
Table 5-3: Exception Vector Offsets ..81
Table 5-4: Exception Vectors...82
Table 5-5: Mapping of Interrupts to the Cause and Status Registers ...95
Table 5-6: Exceptions In Debug Mode ..99
Table 6-1: Coprocessor 0 Register Summary...103
Table 6-2: Read/Write Properties...104
Table 6-3: Index Register Field Descriptions...105
Table 6-4: Random Register Field Descriptions ..106
Table 6-5: 32-bit EntryLo0, EntryLo1 Register Field Descriptions...106
Table 6-6: Cache Coherency Attributes ...107
Table 6-7: Context Register Field Descriptions ...108
Table 6-8: PageMask Register Field Descriptions ...108
Table 6-9: Values for the Mask Field of the PageMask Register...108
Table 6-10: Wired Register Field Descriptions..110
Table 6-11: BadVAddr Register Field Descriptions ..110
Table 6-12: Count Register Field Descriptions ..111
Table 6-13: 64-bit EntryHi Register Field Descriptions ..112
Table 6-14: Compare Register Field Descriptions ...112
Table 6-15: Processor Modes ...113
Table 6-16: Status Register Field Descriptions ..114
Table 6-17: Cause Register Field Descriptions ..117
Table 6-18: Cause Register ExcCode Field..118
Table 6-19: EPC Register Field Descriptions ..119
Table 6-20: PRId Register Field Descriptions..119
Table 6-21: Config Register Field Descriptions...120
Table 6-22: Config1 Register Field Descriptions...122
Table 6-23: WatchLo Register Field Descriptions...124
Table 6-24: WatchHi Register Field Descriptions ...124
Table 6-25: XContext Register Fields..126
Table 6-26: Debug Register Field Descriptions ...127
Table 6-27: DEPC Register Field Descriptions..130
Table 6-28: Performance Counter Register Selects..130
Table 6-29: Performance Counter Control Register Field Descriptions ..131
Table 6-30: Performance Counter Count Register Field Descriptions...131
Table 6-31: Performance Counter Count Register Field Descriptions...134
Table 6-32: ErrCtl Register Field Descriptions..134
Table 6-33: CacheErr Register Field Descriptions...135
Table 6-34: TagLo Register Field Descriptions ...137
Table 6-35: DataLo Register Field Descriptions..138
Table 6-36: TagHi Register Field Descriptions..138
Table 6-37: DataHi Register Field Descriptions ..139
Table 6-38: ErrorEPC Register Field Descriptions ..139
Table 6-39: DESAVE Register Fields..140
Table 8-1: Way Selection Encoding, 4 Ways...152
Table 8-2: Way Selection Encoding, 3 Ways...152
Table 8-3: Way Selection Encoding, 2 Ways...152
Table 8-4: Action on PREF and PREFX Instructions ..153
Table 8-5: Invalid WS Fields Not Causing Errors ...154
Table 8-6: Association of Ways and Bits in the WS Field...154
Table 10-1: Register Field Read/Write Notations ..162
Table 10-2: SYNC Instruction References...164
Table 10-3: “Required” CP0 and dseg Hazard Spacing...165
Table 10-4: Coprocessor 0 Registers for EJTAG...165
Table 10-5: Physical Address and Cache Attribute for dseg, dmseg and drseg...166
xiv MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

.

Table 10-6: Access to dmseg Address Range ..167
Table 10-7: Access to drseg Address Range ..167
Table 10-8: DCR Register Field Descriptions..170
Table 10-9: Instruction Breakpoint Register Summary..172
Table 10-10: Data Breakpoint Register Summary ...173
Table 10-11: Instruction Breakpoint Condition Parameters...174
Table 10-12: Data Breakpoint Condition Parameters ..175
Table 10-13: BYTELANE Value at Unaligned Address ...176
Table 10-14: Behavior on Precise Exceptions from Data Breakpoints ..178
Table 10-15: Rules for Updating BS Bits on Precise Exceptions from Data Breakpoints..178
Table 10-16: Rules for Updating BS Bits on Data Triggerpoints ..179
Table 10-17: Instruction Breakpoint Register Mapping...180
Table 10-18: IBS Register Field Descriptions..180
Table 10-19: IBAn Register Field Descriptions...181
Table 10-20: IBMn Register Field Descriptions ..182
Table 10-21: IBASIDn Register Field Descriptions ..182
Table 10-22: IBCn Register Field Descriptions ...183
Table 10-23: Data Breakpoint Register Mapping ..183
Table 10-24: DBS Register Field Descriptions ..184
Table 10-25: DBAn Register Field Descriptions ...185
Table 10-26: DBMn Register Field Descriptions...185
Table 10-27: DBASIDn Register Field Descriptions...186
Table 10-28: DBCn Register Field Descriptions..186
Table 10-29: DBVn Register Field Descriptions ...188
Table 10-30: TAP Instruction Overview..188
Table 10-31: EJTAG TAP Data Registers ...190
Table 10-32: Device ID Register Field Descriptions ...191
Table 10-33: Implementation Register Field Descriptions ..192
Table 10-34: Data Register Field Descriptions ..193
Table 10-35: Data Register Contents ...195
Table 10-36: Address Register Field Descriptions...196
Table 10-37: EJTAG Control Register Field Descriptions ..197
Table 10-38: Combinations of ProbTrap and ProbEn..200
Table 10-39: Fastdata Register Field Description ..200
Table 10-40: Operation of the FASTDATA access ...201
Table 10-41: Bypass Register Field Description..202
Table 10-42: Information Provided to Probe at Processor Access...202
Table 11-1: Byte Access Within a Doubleword...208
Table 12-1: 5K CP0 Hazard Description Table ...218
Table 12-2: 5K CP0 Hazards and Calculated Delay Times ...219
Table 12-3: 5K Core Family Common Instruction Set ...220
Table 12-4: 5Kf Floating Point Instruction Set ..227
Table 12-5: Symbols Used in the Instruction Encoding Tables ...229
Table 12-6: Encoding of the Opcode Field ..230
Table 12-7: SPECIAL Opcode Encoding of Function Field..230
Table 12-8: REGIMM Encoding of rt Field...230
Table 12-9: SPECIAL2 Encoding of Function Field ...231
Table 12-10: MOVCI Encoding of tf Bit ...231
Table 12-11: COP0 Encoding of rs Field ...231
Table 12-12: COP0 Encoding of Function Field When rs=CO ...231
Table 12-13: COP1 Encoding of rs Field ...231
Table 12-14: COP1 Encoding of rt Field When rs=BC1 ...232
Table 12-15: COP1 Encoding of Function Field When rs=S...232
Table 12-16: COP1 Encoding of Function Field When rs=D ..232
Table 12-17: COP1 Encoding of Function Field When rs=W or L ...232
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 xv

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

.

426
Table 12-18: COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF...233
Table 12-19: COP1X Encoding of Function Field...233
Table 12-20: COP2 Encoding of rs Field ...233
Table 12-21: COP2 Encoding of rt Field When rs=BC2 ...233
Table 12-22: FPU Comparisons Without Special Operand Exceptions...282
Table 12-23: FPU Comparisons With Special Operand Exceptions for QNaNs ..283
Table 12-24: Usage of Effective Address ..286
Table 12-25: Encoding of Bits[17:16] of CACHE Instruction ..287
Table 12-26: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Cleared ...288
Table 12-27: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set ..290
Table 12-28: Values of thehint Field for the PREF Instruction ..
xvi MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

ith as

ighly
dded

cture,
ns. To
d for

pports
le,
n dual

, which
, or

page
re

f 16
pped,
ipeline
indexed
ress is

ts, a
ata
dicated
Chapter 1

Introduction

This chapter provides an introduction to the MIPS Technologies MIPS64™ 5K™ microprocessor core family, w
description of the different members, the 5Kc and 5Kf cores. It contains the following sections:

• Section 1.1, "Overview"

• Section 1.2, "Features"

• Section 1.3, "Core Block Diagram"

1.1 Overview

The MIPS64 5K is a synthesizable, highly-integrated 64-bit MIPS® RISC microprocessor core designed for
high-performance, low-power, low-cost embedded applications. The 5K core is portable across processes, is h
configurable, and is integrated easily into standard design flows. It incorporates powerful instructions for embe
applications, as well as proven memory-management and privileged mode control mechanisms.

The 5K core executes the MIPS64™ instruction set architecture (ISA), which is a superset of the MIPS V™ archite
and includes special multiply-accumulate, conditional move, prefetch, wait, and leading zero/one detect instructio
allow easy migration from 32-bit processors, the 5K provides a 32-bit compatibility mode, in which code compile
MIPS32™ processors can run unaltered.

The 5Kf also core also features a high performances IEEE 754 compliant Floating Point Unit (FPU). The FPU su
both single and double precision instructions. It includes the multiply add instruction, which can issue every cyc
whereby both a multiply and an add single precision operation can be performed in every cycle. The 5Kf core ca
issue a floating point arithmetic instruction with a floating point load/store or integer instruction, whereby two
instructions can be executed every cycle in floating point applications. A coprocessor interface is also provided
allows designers a way to easily extend their architectures by addition of custom functionality, such as network
graphics coprocessors.

The multiply-divide unit (MDU) supports a maximum issue rate of one 32x16 multiply (MUL), multiply-add
(MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per clock, or one 32x32 MUL, MADD, or MSUB
every other clock, or one 64x64 DMULT/DMULTU every 9 clocks.

The memory management unit contains a configurable 16, 32, or 48 dual-entry Joint TLB (JTLB) with variable
sizes, a 4-entry Instruction micro TLB (ITLB), and a 4-entry Data micro TLB (DTLB). Using a TLB with the 5K co
is optional. The alternative is to use a far simpler Fixed Mapping Translation (FMT) scheme.

Optional instruction and data caches are fully programmable from 0 - 64 Kbytes in size, with a maximum size o
Kbytes/way in a 4-way, set-associative implementation. In addition, each cache can be organized as direct-ma
2-way, 3-way, or 4-way set-associative. The 5K supports an instruction- scheduling mechanism that reduces p
stalls on cache misses and also supports hit-under-miss processing in the data cache. Both caches are virtually
and physically tagged. Virtual indexing allows the cache to be indexed in the same clock cycle in which the add
translated.

To ease software debugging, the EJTAG debug solution in the 5K core includes instruction software breakpoin
single-step feature, and a dedicated Debug Mode. Optional hardware breakpoints include 4 instruction and 2 d
breakpoints. An optional Test Access Port (TAP) forms the interface to an external debug host and provides a de
communication channel for debugging of an embedded system.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 1

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 1 Introduction

r

1.2 Features

• 64-bit Data and Address Path
(42-bit virtual and 36-bit physical address space)

• MIPS64 Compatible Instruction Set

– Based on MIPS V™ instruction set architecture

– Multiply-accumulate and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)

– Targeted multiply instruction (MUL)

– Zero/One detect instructions (CLZ, CLO, DLCO, DCLZ)

– Wait instruction (WAIT)

– Conditional move instructions (MOVZ, MOVN)

– Prefetch instructions (PREF, PREFX)

• Dual-issue Floating Point Unit / Coprocessor 1 (5Kf core only)

– Fully pipelined IEEE 754 compliant floating point unit with both single and double precision instructions

– Includes multiply add instruction

– Maximum issue rate of one multiply add single (MADD.S) instruction every clock

– Maximum issue rate of one multiply add double (MADD.D) instruction every other clock

– FPU executes independently of integer pipeline

– Fast flush-to-zero mode to optimize performance

• Dual-issue superscalar micro-architecture capable of executing (5Kf core only):

– 1 integer and 1 arithmetic floating point instruction

– 1 floating point arithmetic and 1 floating point load/store instruction

• General Purpose Coprocessor Interface

– Supports both COP1 and COP2 coprocessors for 5Kc, and COP2 coprocessor for 5Kf

– Supports all MIPS V instructions, including advanced COP1X instructions for 5Kc

– Utilizes high-performance features of the integer unit

– Dual-issue capable interface supports execution of an arithmetic coprocessor instruction, and an integer o
coprocessor load/store instruction every cycle

– Utilizes high-performance features of the integer unit

• Programmable Cache Sizes

– Individually configurable instruction and data caches

– Sizes from 0 - 16 KBytes/way (64 KBytes maximum)

– Direct-mapped, 2-, 3-, or 4-Way Set Associative

– Non-blocking loads and prefetches

– 32-byte cache line size, doubleword sectored

– Virtually indexed, physically tagged

– Cache line locking support

– Optional parity protection
2 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

1.2 Features

wn
• MIPS64 privileged resource architecture

– Count/Compare registers for real-time timer interrupts

– Instruction and Data watch registers for software breakpoints

– Separate interrupt exception vector

– Supervisor Mode operation

– Performance Monitoring logic for analyzing application speed

• Programmable Memory Management Unit

– 16, 32, or 48 dual-entry JTLB with variable page sizes

– 4-entry instruction micro TLB

– 4-entry data micro TLB

– Support for 8-bit ASID

– Support for 4KB - 16MB page sizes

• Simple Bus Interface Unit (BIU)

– All I/Os fully registered

– Separate unidirectional 36-bit address and 64-bit data buses

– 32-byte write buffer (4 doublewords)

– 1-line (32-byte) eviction buffer

• Multiply/Divide Unit

– Max issue rate of one 32x16 multiply per clock

– Max issue rate of one 32x32 multiply every other clock

– Max issue rate of one 64x64 multiply every nine clocks

– 37 clock latency on 32/32 divides.

– 69 clock latency on 64/64 divides

– Early-in feature for divides allows results sooner for smaller dividend values

• Power Control

– Minimum frequency is 0 MHz

– Power-down mode (triggered by WAIT instruction)

– Support for software-controlled clock divider

– Sleep Mode: During this mode, the clocks are shut off. Sleep mode is entered automatically from power-do
mode after all bus activity stops.

• EJTAG Debug Support

– Software Debug Breakpoint instruction (SDBBP)

– Single-step feature

– Debug Mode

– Optional hardware breakpoints (4 instruction and 2 data breakpoints)

– Optional Test Access Port (TAP) interface to debug host
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 3

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 1 Introduction

 the

add,
nd
imize
1.3 Core Block Diagram

The basic blocks that comprise the 5K core are shown for the 5Kc core inFigure 1-1and for the 5Kf core inFigure 1-2.
Blocks that are optional are shown as shaded. The optional blocks can be added to the 5K core, depending on
particular requirements of an implementation.

Figure 1-1 5Kc Core Block Diagram

Figure 1-2 5Kf Core Block Diagram

Each block is described individually in the remaining sections of this chapter.

1.3.1 Execution Unit

The 5K core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift,
subtract). The 5K core contains thirty-two, 64-bit general-purpose registers used for scalar integer operations a
address calculation. The register file consists of two read ports and two write ports and is fully bypassed to min
operation latency in the pipeline.

 The execution unit includes:

• 64-bit adder used for calculating arithmetic results and data addresses

Mul/Div Unit

Execution
Core

System
Coprocessor

MMU

TLB

Cache
Control

Instruction
Cache

Data
Cache

B
IU

EC interface

Fixed/Required Optional

Power
Mgmt.

5Kc Core

COP interface

FMT

EJTAG
Breakpoints

TAP Ctrl

Mul/Div

Execution Core

System
Coprocessor

MMU

TLB

EJTAG

Cache
Control

Instruction
Cache

Data
Cache

B
IU

EC interface

Fixed/Required Optional

Power
Mgmt.

5Kf Core

Breakpoints
TAP Ctrl

COP interface

FMT
Floating Point

Unit (FPU) Unit

Dual issue capability
4 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

1.3 Core Block Diagram

oint
oint
zed for
ty-two

e
uction
cesses
rands

rdware.

the
such

ions are
ted

x16
4

ssue of
in the

 the
tions
ighest

ctions

clock
uction
r has
tected,
• Address unit for calculating the next instruction address

• Logic for branch determination and branch target address calculation

• Load aligner

• Bypass multiplexers used to avoid stalls when executing instructions streams in which
data-producing instructions are followed closely by consumers of their results

• Zero/One detect unit for implementing the CLZ, DCLZ and CLO, DCLO instructions

• Logic Unit for performing bitwise logical operations

• Shifter & Store Aligner

1.3.2 Floating Point Unit (FPU) / Coprocessor 1 (5Kf core only)

The 5Kf core Floating Point Unit (FPU) implements the MIPS64 ISA (Instruction Set Architecture) for floating-p
computation. The implementation supports the ANSI/IEEE Standard 754 (IEEE Standard for Binary Floating-P
Arithmetic). The hardware supports IEEE single and double precision data formats. The performance is optimi
single precision formats. Most instructions have a 1 cycle throughput and 4 cycle latency. The FPU contains thir
64-bit floating-point registers used for floating point operations.

The FPU implements the MIPS64 multiply-add (MADD) and multiply-sub (MSUB) instructions with intermediat
rounding after the multiply function. The result is guaranteed to be the same as executing a MUL and an ADD instr
separately, but the instruction latency, instruction fetch, dispatch bandwidth, and the total number of register ac
are improved. A fast Flush-to-Zero mode is implemented to optimize performance. IEEE denormalized input ope
are supported by hardware for some instructions. IEEE denormalized result operands are not supported by ha

The FPU has a separate pipeline for floating point instruction execution. This pipeline operates in parallel with
integer unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows long-running FPU operations,
as divides or square root, to be partially masked by system stalls and/or other integer unit instructions. Instruct
always dispatched and completed in order. The exception model is ‘precise’ at all times. The FPU is also deno
coprocessor 1.

For additional information, refer toChapter 3, “Floating-Point Unit.”

1.3.3 Multiply/Divide Unit (MDU)

The Multiply/Divide unit performs multiply and divide operations. The MDU supports execution of a 16x16 or 32
multiply operation every clock cycle. 32x32 multiply operations can be issued every other clock cycle, and 64x6
multiply operations can be issued every nine clock cycles. Appropriate interlocks are implemented to stall the i
back-to-back 32x32 and 64x64 multiply operations. Multiply operand size is automatically determined by logic
MDU.

The MDU contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with
integer unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows long, multicycle MDU opera
(such as a divide) to be partially masked from system stalls and other integer unit instructions. To achieve the h
possible performance, the MDU contains a 32x16 Booth-recoded multiply array, and each class of multiply instru
is processed in a different way, so as to best utilize available resources.

Divide operations are implemented with a simple 1 bit-per-clock iterative algorithm. A 32-bit divide requires 37
cycles to complete, while a 64-bit divide requires 69 clock cycles. Any attempt to issue a subsequent MDU instr
while a divide is still active causes an IU pipeline stall until the divide operation is completed. However, the divide
an early-in feature which detects the size of the dividend in 8-bit increments, so that when a smaller dividend is de
the algorithm reduces the number of iterations accordingly.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 5

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 1 Introduction

, the
r, User,
 set

pports

LB), a

. For
Kbytes

accessed

power
esigned
umption

sor cycle.
ccur in
For additional information, refer toChapter 2, “Pipeline.”

1.3.4 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation and cache protocols
exception control system (for example, interrupts enabled or disabled), the operating modes (Kernel, Superviso
or Debug Mode), and the processor’s diagnostics capability. Configuration information such as cache size and
associativity is available by accessing the CP0 registers.

For additional information, refer toChapter 6, “Coprocessor 0 Registers.”

1.3.5 Memory Management Unit (MMU)

The 5K core contains an MMU that interfaces between the execution unit and the cache controller. The MMU su
two types of address translation mechanisms, either of which can be implemented:

• Translation lookaside buffer (TLB)

• Fixed Mapping Translation (FMT)

The TLB consists of three address translation buffers, a 16, 32, or 48 dual-entry fully associative Joint TLB (JT
4-entry fully associative Instruction TLB (ITLB), and a 4-entry fully associative Data TLB (DTLB).

For additional information, refer toChapter 4, “Memory Management.”

1.3.6 Cache Controllers & Bus Interface

The instruction and data cache controllers support caches of various sizes, organizations, and set-associativity
example, the data cache can be 8 Kbytes in size and 2-way set-associative, while the instruction cache can be 16
in size and 4-way set-associative. In addition, each cache has its own 64-bit data path, and both caches can be
in the same pipeline clock cycle.

The Bus Interface Unit (BIU) controls the external interface signals.

For additional information, refer toChapter 8, “Cache Organization and Operation.”

1.3.7 Power Management

The 5K microprocessor core offers a number of power-management features, including low-power design, active
management, and power-down modes of operation. The core is a static design that supports a WAIT instruction, d
to signal the rest of the system that execution and clocking should be halted, thereby reducing system power cons
during idle periods.

For additional information, refer toChapter 9, “Power Management.”

1.3.8 Instruction and Data Caches

The 5K core supports optional, on-chip instruction and data caches that can each be accessed in a single proces
The caches are virtually indexed and physically tagged, allowing the virtual-to-physical address translation to o
parallel with the cache access, rather than having to wait for the physical address translation.
6 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

1.3 Core Block Diagram

hich
ic that

into the
cked

s always
E

n and
g Mode
ruction
While cache refills are in progress, the caches can continue processing hits. Streaming is also supported, in w
instructions and data are forwarded during cache refills. Cache performance is further enhanced by special log
implements a least-recently used (LRU) algorithm for way selection when a cache line is replaced.

The 5K core supports instruction cache locking. This feature allows critical code and data segments to be locked
cache, enabling the system designer to maximize the efficiency of the system cache. For the data cache, the lo
contents can be updated on a store hit, but cannot be selected for replacement on a store miss. Cache locking i
enabled on all cache entries—entries can be marked as locked or unlocked on a per-line basis using the CACH
instruction.

For additional information, refer toChapter 8, “Cache Organization and Operation.”

1.3.9 EJTAG Debug Support

The 5K core provides an optional Enhanced JTAG (EJTAG) interface for use in software debugging of applicatio
operating-system code. In addition to standard User, Supervisor, and Kernel Modes, the 5K core provides a Debu
which is entered after a Debug exception is taken and continues until a Debug Exception Return (DERET) inst
is executed.

For additional information, refer toChapter 5, “Exception Processing,” andChapter 10, “EJTAG Debug Features.”
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 7

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 1 Introduction
8 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

e and a

 the
Chapter 2

Pipeline

Chapter 2 describes the 5K processor core instruction pipeline. The pipeline includes a six-stage integer pipelin
separate execution pipeline for multiply and divide operations. The two pipelines operate in parallel.

This chapter contains the following sections:

• Section 2.1, "Pipeline Stages"

• Section 2.2, "Instruction Fetch"

• Section 2.3, "Branch Delay"

• Section 2.4, "Limited Dual Issue"

• Section 2.5, "Instruction Fetching from Uncached Memory Space"

• Section 2.6, "Data Access"

• Section 2.7, "Instruction Scheduling"

• Section 2.8, "MDU Pipeline"

• Section 2.9, "Slip Conditions and Interlock Handling"

2.1 Pipeline Stages

The integer pipeline consists of the following six stages:

• Instruction Fetch (I Stage)

• Instruction Dispatch (D Stage)

• Register File Read (R Stage)

• Instruction Execution (E Stage)

• Memory Access (M Stage)

• Writeback (W stage)

The 5K core implements a bypass mechanism that allows the result of an operation to be forwarded directly to
instruction that needs it, without having to write the result to the register and then read it back.

Figure 2-1 shows the operations performed in each pipeline stage.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 9

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

s.
Figure 2-1 Pipeline Stages

2.1.1 I Stage: Instruction Fetch

During the I stage:

• Instruction(s) are fetched from the instruction cache.

• The instruction translation lookaside buffer (ITLB) performs the virtual-to-physical address translation.

2.1.2 D Stage: Instruction Dispatch

During the D stage:

• Branch decode and prediction.

• Instruction dispatch to coprocessor/integer unit.

2.1.3 R Stage: Register File Read

During the R stage:

• The GPR register file is read.

• The instruction is decoded.

2.1.4 E Stage: Execution

During the E stage:

• The Arithmetic Logic Unit (ALU) performs the arithmetic or logical operation for register-to-register instruction

• The ALU determines whether the branch condition is true.

• All multiply and divide operations begin in this stage.

• The ALU calculates the full virtual address for load and store instructions.

• The cache look-up starts for loads and stores.

I D R E M W

I$ Data

I$ Tag

Ta
g

C
m

p.

ITLB W
ay

 S
el

ec
t

Dispatch

Branch Tgt

GPR Read

Decode

GPR WriteB
yp

Low
Addr

ALU

D$ Tag

DTLB Ta
g

C
m

p

D$ Data

W
ay

 S
el

ec
t

Lo
ad

 A
lig

n

Bypass

Bypass

Bypass
10 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

2.2 Instruction Fetch

 The

tching

efill
to the

and one
o be
e total

a data

 to

y, the I
2.1.5 M Stage: Memory Access

During the M stage:

• The data translation lookaside buffer (DTLB) performs the virtual-to-physical address translation.

• Data cache look-up completes.

• Loaded data is aligned.

2.1.6 W Stage: Writeback

During the W stage:

• For register-to-register or load instructions, the result is written back to the register file.

2.2 Instruction Fetch

The 5K processor maintains a three-entry doubleword instruction buffer, which can store up to six instructions.
instruction buffer includes the following features:

• Speculative fetching of several instructions.

• Intelligent handling of instruction cache misses.

• Minimization of penalty for branches and jumps.

Using speculative instruction fetching, the instruction buffer can keep ahead of the rest of the pipeline by prefe
instructions which may be dispatched at a later time. Instruction-cache refills are potentially initiated early, thus
minimizing delays in the pipeline.

To avoid unnecessary instruction-cache refills, the instruction buffer employs a conservative, intelligent cache-r
scheme, ensuring that a cache line is refilled only if it contains an instruction which is certain to be dispatched
execution pipeline. For example, speculative refills are performed only if there are no jumps or branches in the
instruction buffer.

When a branch instruction is recognized, the instruction buffer ensures that one entry contains the branch target
entry contains the instruction after the branch delay slot. The instruction buffer predicts all branch instructions t
taken. Correctly predicted branches impose no pipeline delay. When the branch is mispredicted (not taken), th
penalty will be only one pipeline bubble (as explained inSection 2.3, "Branch Delay").

Note that the JR and JALR instructions always cause one pipeline bubble because of the interlock resulting from
dependency on the source register.

When required by the instruction buffer, the instruction cache is accessed. The instruction address is translated
determine if the required instruction resides in the cache. If it does not, an instruction-cache miss occurs.

When a cache miss is detected, the fetch request is issued on the external bus. If the instruction buffer is empt
stage is slipped (refer toSection 2.9, "Slip Conditions and Interlock Handling"). When the instruction is returned, the
I-stage slip is released, and the instruction is written to the instruction register for immediate use.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 11

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

during
ipeline

lated
e later,
ely

r stall

mp must
t.

le in the

s

2.3 Branch Delay

The 5K pipeline has a branch delay of one cycle. The one-cycle delay allows a branch target address calculated
the D stage to be used for the instruction access in the following I stage. Use of a branch delay slot avoids a p
bubble on all correctly-predicted branch instructions.

The pipeline begins fetching the predicted path in the cycle following the delay slot. The branch condition is calcu
in the E stage of the branch. If the condition of the branch was mispredicted, the correct path is followed one cycl
causing a bubble in the pipeline. Note that at this point the mispredicted path will have been already speculativ
fetched.

Figure 2-2 shows a correctly-predicted branch. A mispredicted branch is shown inFigure 2-3.

Figure 2-2 Correctly-predicted Branch

Figure 2-3 Mispredicted Branch

Keep in mind that the instruction buffer has some limitations, namely, that a stall in the pipeline may cause a late
because of the nature of the instruction cache system. This occurs in two cases:

• When a taken branch or jump at an even address jumps to an instruction at an odd address, the branch or ju
be stalled in its D stage. This stall causes a stall of one clock cycle in the I stage of the branch or jump targe

• When a not-taken branch at an even address is stalled in its R stage. This stall causes a stall of one clock cyc
I stage of the instruction following the delay slot of the branch.

These two cases are shown inFigure 2-4 andFigure 2-5. Figure 2-4 shows a taken branch or jump at an even addres
that jumps to an odd address, causing a stall in the D stage of the branch or jump.Figure 2-5shows a not-taken branch
at an even address, which causes a stall in the branch’s R stage.

Branch or Jump

Delay Slot Instruction

Correctly-Predicted Instruction

I D R E M W

I D R E M W

I D R E M W

Branch

Delay Slot Instruction

Mispredicted Instruction

I D R E M W

I D R E M W

I D

Ia D R E M WCorrect Instruction

a. Speculatively fetched before mispredicted instruction
12 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

2.4 Limited Dual Issue

ue”.
to the
of up
Figure 2-4 Taken Branch/Jump at Even Address Jumps to Instruction at Odd Address

Figure 2-5 Not-taken Branch At Even Address

2.4 Limited Dual Issue

The 5K processor employs a performance-enhancing dual issue dispatch scheme, known as “Limited Dual Iss
Whenever possible, so-called “arithmetic” coprocessor instructions will be dispatched in parallel with instructions
integer pipeline. By writing code for the coprocessor(s) with this in mind, it is possible to achieve a performance
to two instructions per clock cycle.

Below instructions are grouped as either dual issueable arithmetic coprocessor instructions or dual issueable
non-arithmetic instructions. Instructions not in one of these groups will always be single issued.

Table 2-1 Arithmetic Coprocessor Instructions which can be Dual Issued

Major Opcodes Minor Opcodesa

a. IR[x] refers to bit or bit range x in the instruction opcode

MDMX ALL
Except ALNV.fmt

COP1 IR[25] == 1
Except MOVN.fmt, MOVZ.fmt

COP1X IR[5:4] != 00
Except ALNV.PS

COP2 IR[25] == 1

Taken Branch/Jump

Delay Slot Instruction

Target Instruction

E M WI

I

D R

E MD RI

D

W

E MD RII

Not-taken Branch

Delay Slot Instruction

Mispredicted Instruction

E M WI

I

D R

E MD RD

R

W

II D

Correct Instruction I ED R M
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 13

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

ERET,
r be

he 5K

ithmetic

issued

bility
Table 2-2 Non-Arithmetic Instructions which can be Dual Issued

Note that the above tables excludes dual issue of (among other instructions) SSNOP, all branches and jumps,
DERET, MOVCI, CTCx/CFCx and MTC0/MFC0. Furthermore, an instruction in a branch/jump delay slot will neve
dual issued.

When an instruction pair consisting of one arithmetic and one non-arithmetic is present in the instruction buffers, t
processor will try to dual issue the instruction pair if both instructions are included inTable 2-1andTable 2-2. However,
the ability to dual issue instructions degrades just after jumps/branches.

Following rules of thumb should be employed to ensure the best dual issue performance of code containing ar
instructions:

• Interleave arithmetic and non-arithmetic instructions

• Double word align the instruction pairs which are to be dual issued (unaligned instruction pairs can be dual
but the instruction buffers are better utilized when instructions are aligned)

• Limit the number of branches and jumps

Following instruction sequence is an example of floating-point code which significantly utilizes the dual-issue capa
of the 5K processor. The code displayed is the manually optimized inner loop of a Mandelbrot application.

loop: madd.s fp14, fp18, fp10, fp10
 sltu r2, r8, r9
 msub.s fp15, fp18, fp11, fp11
 mfc1 r12, fp17
 mul.s fp16, fp10, fp11
 mfc1 r22, fp27
 madd.s fp24, fp28, fp20, fp20
 sltu r11, r12, r4
 msub.s fp25, fp28, fp21, fp21
 sltu r21, r22, r4
 add.s fp17, fp14, fp15
 or r3, r11, r21

Major Opcodes Minor Opcodes Additional Restrictions:
Not dual issued when FR
bit in CP0 Status register

is zero

ADDI, ADDIU, SLTI, SLTIU, ANDI, ORI, XORI, LUI
DADDI, DADDIU, LDL, LDR
LB, LH, LWL, LW, LBU LHU, LWR, LWU
SB, SH, SWL, SW, SDL, SDR, SWR, CACHE
LL, LWC1, LWC2, PREF, LLD, LDC1, LDC2, LD
SC, SWC1, SWC2, SCD, SDC1, SDC2, SD

N/A LL, LWC1, LWC2, PREF, LLD,
LDC1, LDC2, LD

SC, SWC1, SWC2, SCD, SDC1,
SDC2, SD

SPECIAL All with following exceptions:
SSNOP (subset of SLL)
MOVCI
JR
JALR

No restrictions

COP1 MFC1, DMFC1, MTC1, DMTC1 Not dual issued

COP1X LWXC1, LDXC1, LUXC1
SWXC1, SDXC1, SUXC1
PREFX

Not dual issued

COP2 MFC2, DMFC2, MTC2, DMTC2 No restrictions
14 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

2.5 Instruction Fetching from Uncached Memory Space

U
ucing
6 dual

t dual

ssible
ration.

certain
ligned
nit has

he next

ges as
occur
 mul.s fp26, fp20, fp21
 and r2, r3, r2
 sub.s fp10, fp14, fp15
 movn r20, r8, r21
 add.s fp27, fp24, fp25
 movn r10, r8, r11
 madd.s fp11, fp13, fp2, fp16
 addiu r8, r8, 1
 sub.s fp20, fp24, fp25
 bne r2, r0, loop
 madd.s fp21, fp23, fp2, fp26

Note the following:

• Floating point arithmetic instructions (MADD.s, MSUB.s, MUL.s, SUB.s, ADD.s) are interleaved with
non-arithmetic instructions (SLTU, MFC1, OR, AND, MOVN, ADDIU).

• Data dependencies between instructions are allowed to resolve with no stalls by rearranging the code. An FP
instruction normally have a latency of 4 clock cycles, so in order to avoid stalls the producer (instruction prod
result) and the consumer (instruction using result) must be separated by 3 clock cycles which equivalents to
issued instructions.

• Above loop of 23 instructions executes in 14 clock cycles. Theoretically it could execute in 12 clock cycles bu
issue possibilities are missed due to the branch (delay slot and branch target).

• Each loop iteration computes two pixels in the Mandebrot picture. By computing two pixels in parallel it is po
to avoid the FPU to idle due to dependency stalls. The calculation speed is thus 7 clock cycles per pixel per ite
The performance can be increased further by unrolling the loop, i.e. minimizing the number of branches.

2.5 Instruction Fetching from Uncached Memory Space

The MIPS ISA prohibits speculative fetches from uncached memory space, that is, only those instructions that are
to be dispatched to the pipeline may be speculatively fetched. To comply with this rule, one pair of doubleword-a
instructions is fetched at a time, and all dependencies for the two instructions are resolved. Only when the fetch u
determined that neither instruction is a jump or branch and that no exception occurred during their execution, t
instruction pair is fetched. This results in the pipeline performance shown inFigure 2-6.

Figure 2-6 Instruction Fetching from Uncached Memory Space

In configurations without an instruction cache, this restrictive fetching scheme can be avoided, so that pipeline
performance is limited only by the bandwidth to external memory. To enable this feature, specify the memory pa
cacheable (even though no cache exists). Speculative fetching and full usage of the instruction buffer will then
within those memory pages. For information on specifying the memory attributes of pages, refer toChapter 4, “Memory
Management.”

Instruction #1

Instruction #2

Instruction #3

Instruction #4

E M W

E M WR

E M WI

I

D R

E MD R
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 15

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

 is

olved and
ermined
 other
ss. This

register

wing

, this

,

n
e while
led (a

ed until
tion to
d to slip

 as
hile

ger
r unit
ay, and

ltiply
2.6 Data Access

As explained inChapter 8, “Cache Organization and Operation,” when a data access is requested, the data address
translated to determine if the required data resides in the cache. If it does not, a data-cache miss occurs.

When a data-cache miss is detected in the M stage, the core may slip the M stage until the miss has been res
the requested word becomes available (in case it is a load). The number of clocks required to return the data is det
by the access time on the external bus. However, in many cases the 5K processor core can continue executing
instructions while fetching the load data on the external bus, thus avoiding any slips caused by the data-cache mi
feature is described inSection 2.7, "Instruction Scheduling".

When the required data is returned, it passes through the aligner before being forwarded to the execution unit and
file.

2.7 Instruction Scheduling

For some multicycle instructions, the 5K processor core is able to write results to the register file out-of-order, allo
other instructions to execute while an earlier instruction is waiting to deliver its data. This feature is calledinstruction
scheduling, that is, an instruction is scheduled to write-back to the register file at a later time (for load instructions
feature is known as anon-blocking cache).

The instructions that can be scheduled are: LB, LBU, LH, LHU, LW, LWU, LD, MFHI, MFLO, MUL, MFC1, DMFC1
CFC1, MFC2, DMFC2 and CFC2. Only one scheduled instruction can be outstanding at a time.

While an instruction is scheduled, other instructions can execute freely; however, once the data is needed by a
instruction, that instruction slips its R stage until the data is returned. Other schedulable instructions can execut
an instruction is scheduled. Loads and stores that hit in the cache can execute while a previous load is schedu
feature calledhit-under-miss).

Because only one instruction can be scheduled at a time, the M stage of a second schedulable instruction is slipp
it delivers its data or until the previous scheduled instruction delivers its data, thereby causing the second instruc
become scheduled. For example, two loads that both miss in the cache will cause the M stage of the second loa
until the first load returns its data.

In order to optimally utilize the instruction-scheduling feature, schedulable instructions should be placed as far
possible from the instruction that uses the data, thus maximizing the number of instructions that can execute w
waiting for the data.

2.8 MDU Pipeline

The 5K processor core contains a multiply/divide unit (MDU) with a separate pipeline for multiply and divide
operations. This pipeline operates in parallel with the integer unit (IU) pipeline and does not stall when the inte
pipeline stalls. This allows multicycle MDU operations to be partially masked from system stalls and other intege
instructions. To achieve the highest possible performance, the MDU contains a 32x16 Booth-recoded multiply arr
each class of multiply instructions is processed in a different way, so as to best utilize available resources.

2.8.1 Multiply/MAC Operations

The MDU supports all of the MIPS64 multiply operations. Operands can be 16, 32, or 64 bits in size. For all mu
and multiply-accumulate operations, the MDU dynamically determines the size of thert operand, with allowable
operations of 32x16, 32x32, and 64x64.
16 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

2.8 MDU Pipeline

eded for

e:

f

efined:

or

tions,
rs and

For
ormed
eration
Because the MIPS64 architecture defines its general-purpose registers to be 64 bits, precise definitions are ne
the terms16-bit operand, 32-bit operand, and64-bit operand.

An operand is a 16-bit operand if either of the following conditions is true:

1. The operation is signed and the upper 48 bits are equal to bit 15.

2. The operation is unsigned and the upper 48 bits are 0.

An operand is a 32-bit operand if it is not a 16-bit operand as described above, and either of the following is tru

1. The operation is signed and the upper 32 bits are equal to bit 31.

2. The operation is unsigned and the upper 32 bits are 0.

If an operand does not qualify as a 16-bit or 32-bit operand, then it is a 64-bit operand. (Note that the results o
single-word multiply instructions are not defined if either of the operands are 64 bits.)

Given the above definitions, the three types of operations—32x16, 32x32, and 64x64—can also be precisely d

A multiply is defined as a 32x16 multiply if both of the following are true:

• Thers operand is 16 bits or 32 bits.

• Thert operand is 16 bits.

A multiply is defined as a 32x32 multiply if both of the following are true:

• Thers operand is 16 bits or 32 bits.

• Thert operand is 32 bits.

A multiply is defined to be a 64x64 multiply only for the DMULT/DMULTU operations, and only if it is not a 32x16
32x32 multiply, as defined above.

Figure 2-7shows a diagram of a 32x16 multiply operation. In the first cycle, thers andrt operands arrive and the Booth
recoding function occurs. The multiply array requires one clock and occurs in the second cycle. For MAC opera
the accumulation also occurs in the second cycle. In the third cycle, the carry-propagate-add (CPA) function occu
the operation completes.

Figure 2-7 MDU Pipeline Flow During a 32x16 Multiply Operation

Figure 2-8shows a diagram of a 32x32 multiply operation. In the first cycle, thers andrt operands arrive and the Booth
recoding function is performed. The multiply array, requiring two clocks, occurs in the second and third cycles.
multiply-accumulate (MAC) operations, the accumulation also occurs in the second cycle. Booth recoding is perf
in the second cycle for the second pass through the array. In the fourth cycle, the CPA function occurs and the op
completes.

Booth Array CPA

Clock
1 2 3
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 17

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

ditional
array.

IVU

8-bit,

ired to
or

g

ainder
r this
 in a

uire
tion,
Figure 2-8 MDU Pipeline Flow During a 32x32 Multiply Operation

Figure 2-9 shows a diagram of a 64x64 multiply operation. It requires eight passes through the array and an ad
CPA cycle, for a total of nine cycles. Booth recoding is always performed in the cycle before the pass through the
The CPA function is used multiple times to accumulate intermediate results into the final HI/LO results.

Figure 2-9 MDU Pipeline Flow During a 64x64 Multiply Operation

2.8.2 Divide Operations

Divide operations are implemented with a simple, 1-bit-per-clock nonrestoring division algorithm. Thus, for DIV/D
instructions, 32 cycles are required to complete the algorithm, and for DDIV/DDIVU instructions, 64 cycles are
required. In order to speed up this algorithm, logic is included which detects small values on thers (dividend). Thus, if
rs is actually an 8-bit value, only 8 iterations are required. This logic detects 8-bit, 16-bit, 24-bit, 32-bit, 40-bit, 4
and 56-bitrs values. To complete the calculation, some additional cycles are required, as described below.

Because the nonrestoring division algorithm can only be used for positive operands, an initialization cycle is requ
negate thers operand. To eliminate critical timing paths and simplify the logic, this negation cycle is taken even f
positivers operands, although the negation itself is not performed.

One cycle is then used to detect smallrs operands, as described above. If a smallrs operand is detected, then the startin
dividend is shifted the required number of bits in this cycle.

At the end of the computation, a negative remainder may result. If so, a final iteration is required to make the rem
positive. If the final remainder is positive, this extra iteration is zeroed out and does not affect the final result. Afte
final iteration, the quotient and remainder need to be sign-extended and possibly negated if the division results
negative number.

Figure 2-10 shows a diagram for a 32-bit divide operation. As shown in the figure, the DIV/DIVU instructions req
up to 37 cycles to complete: one cycle for initialization, once cycle for shifting operands, up to 32 cycles of itera
one final iteration, and two cycles for quotient and remainder negation.

Clock 1 2 3

Booth Array CP

4

Booth Array

Clock 1 2 3 4

Booth Array CPA

CPA

5 6 7 8 9 10 11

Booth Array CPA

Booth Array CPA

Booth Array CPA
Booth Array CPA

Booth Array CPA

Booth Array CPA
Booth Array CPA
18 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

2.8 MDU Pipeline

les
ation,

ivide
escribe
Figure 2-10 MDU Pipeline Flow During a 32-bit Divide Operation

Figure 2-11shows a diagram of a 64-bit divide operation. As shown in the figure, DDIV/DDIVU require up to 69 cyc
to complete: one cycle of initialization, one cycle for shifting operands, up to 64 cycles of iteration, one final iter
and two cycles for quotient and remainder negation.

Figure 2-11 MDU Pipeline Flow During a 64-bit Divide Operation

2.8.3 Latencies and Repeat Rates

Table 2-3 shows the number of cycles required by the MDU to compute the result for each of the multiply and d
instructions. Because the MDU can sometimes bypass results before they are written back, this table does not d
pipeline interlocks. For a complete description of when MDU instructions interlock, refer toTable 2-6 on page 23.

Table 2-3 5K Core Instruction Latencies

Operation Instructions Latency
(in clock cycles)

32x16
Multiply/MAC

DMULT/DMULTU,
MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU, MUL

3

32x32
Multiply/MAC

DMULT/DMULTU,
MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU,
MUL

4

64x64 Multiply DMULT/DMULTU 11

64/64 Divide DDIV/DDIVU 69

56/64 Divide DDIV/DDIVU 61

48/64 Divide DDIV/DDIVU 53

40/64 Divide DDIV/DDIVU 45

32/32 or 32/64
Divide

DIV/DIVU
DDIV/DDIVU 37

24/32 or 24/64
Divide

DIV/DIVU
DDIV/DDIVU 29

16/32 or 16/64
Divide

DIV/DIVU
DDIV/DDIVU 21

RS Adjust Rem AdjustAdd/Subtract

Clock 1 3-34 35 36 37

Sign Adjust Sign AdjustShift

2

RS Adjust Rem AdjustAdd/Subtract

Clock 1 3-66 67 68 69

Sign Adjust Sign AdjustShift

2

MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 19

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

s that

on is

e runs
ter file
ble.
Table 2-4shows the repeat rates for multiply instructions. These numbers are of interest only for those instruction
normally repeat, namely, multiply-accumulate instructions and the MUL instruction.

The MDU implements hardware interlocking to stall the integer pipeline if it is busy when another MDU operati
dispatched by the integer unit. Because of this interlocking, there are no software restrictions on using the MDU
instructions.

2.8.4 MDU Interaction with Integer Unit Pipeline

MDU operations begin when an instruction enters the E-stage of the integer pipeline, after which the MDU pipelin
more or less independently from the integer pipeline. For instructions that write a result back to the integer regis
(MFHI, MFLO, MUL), the MDU will send the results during the M-stage of the integer pipeline, if they are availa
If they are not available, the integer unit will schedule these instructions.

Figure 2-12 shows the pipeline flow for the following sequence of instructions:

1. 32x16 multiply (M1)

2. ADD

3. 32x32 multiply (M2)

8/32 or 8/64 Divide DIV/DIVU
DDIV/DDIVU 13

Table 2-4 5K Core Instruction Repeat Rates

Operation Instructions Repeat Rate (in
clock cycles)

32x16 MAC MADD/MADDU,
MSUB/MSUBU every cycle

32x32 MAC MADD/MADDU,
MSUB/MSUBU every other cycle

32x16 Multiply MUL every cycle

32x32 Multiply MUL every other cycle

Table 2-3 5K Core Instruction Latencies (Continued)

Operation Instructions Latency
(in clock cycles)
20 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

2.9 Slip Conditions and Interlock Handling

itten

e.
tions,
Figure 2-12 Integer Pipeline and MDU Pipeline Interaction

A clock-by-clock analysis ofFigure 2-12 is described below.

Clock 1: The first 32x16 multiply operation, M1, enters the I stage and is fetched from the instruction cache.

Clock 2: M1 enters the D stage, and the ADD operation enters the I stage.

Clock 3: M1 enters the R stage. The ADD operation enters the D stage. The 32x32 multiply operation, M2, enters the I
stage and is fetched from the instruction cache.

Clock 4: M1 is passed to the Booth stage of the MDU pipeline. M2 enters the D stage. In this clock cycle, there is no
activity in the E stage of the integer pipeline.

Clock 5: M1 enters the Array stage. The ADD operation enters the E stage of the integer pipeline. M2 enters the R stage.

Clock 6: M1 passes to the CPA stage of the MDU pipeline (because M1 is a 32x16 multiply operation, only one clock
is required for the Array stage). The ADD operation enters the M stage of the integer pipeline. M2 enters the Booth stage.

Clock 7: M1 completes and its result is written to the HI/LO register pair. The ADD operation completes and is wr
to the register file in the W stage of the integer pipeline. M2 enters the Array stage.

Clock 8: Because a 32x32 multiply requires two passes through the multiplier, M2 remains in the Array stage.

Clock 9: M2 enters the CPA stage of the MDU pipeline

Clock 10: M2 completes and its result is written to the HI/LO register pair at the end of the clock cycle.

2.9 Slip Conditions and Interlock Handling

An interlock is a condition which halts the smooth flow of the pipeline, for example, a cache miss in the M stag
Interlocks are resolved by hardware—in each clock cycle, interlock conditions are checked for all active instruc
and the condition is handled, for example, by a cache refill operation.

Table 2-5 lists the types of pipeline interlocks for the 5K processor core.

Clock 1 2 3 4 5 6 7 8 9 10 11

I D R

Booth Array Array

M1

ADD

M2

CPA

M1

M2

In
te

ge
r

P
ip

el
in

e
M

ul
tip

ly
P

ip
el

in
e

Booth Array CPA

I D R E M W

I D R
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 21

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

t is,

rlocks
vance.

ge of the
vance,

lve the

cond
urs in
fetch
Processors designed by MIPS Technologies, Inc. resolve hardware interlocks either by stalling the pipeline, tha
stopping all instructions in all stages (also calledfreezing the pipeline), or by using aslip, in which only a part of the
pipeline is held static, while other parts of the pipeline can continue to advance. In the 5K core processor, all inte
are resolved by a slip—in every clock cycle, internal logic determines whether each pipe stage is allowed to ad

Slip conditions may propagate to preceding stages; for example, when the M stage does not advance, the E sta
next instruction cannot advance either. However, if the next instruction has not yet entered its E stage, it can ad
thus eliminating any potential bubbles in the pipeline.

Slipped instructions are retried on subsequent cycles, as preceding pipeline stages advance and perhaps reso
dependency. Hardware inserts NOPs in the bubbles caused by the slip.

Figure 2-13 shows examples of pipeline slips.

Figure 2-13 Pipeline Slip

In Figure 2-13, there is two-cycle slip in the M stage and in the I stage of two consecutive instructions. In the se
clock cycle, the pipeline is full, and an instruction-cache miss is detected for I7. The instruction-cache miss occ
clock cycle 2, when the I7 instruction fetch is attempted. In this example, two clock cycles (3 and 4) are required to
the I7 instruction from memory. Note that during this time, the previous instructions (I1, I2, I3, I4, I5, and I6) can

Table 2-5 Pipeline Interlocks

Interlock Type Sources Slip Stage

ITLB Miss Instruction TLB I Stage

Instruction cache miss Instruction cache I Stage

Instruction SeeTable 2-6

DTLB Miss Data TLB M Stage

Data cache miss

Unscheduled load that misses in data
cache

M Stage

Multicycle cache operation

SYNC or CACHE instruction

Store when write-through buffer is full

Store hit in cache refill buffer

I D R E M W

D R M W

D R E M W

R E M W

E M W

M W

W

I D E M W

I E M WRD

R

EI

1 2 3 4 5 6 7 8 9 10 11

I1

I2

I3

I4

I5

I6

I7

I8

I9
22 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

2.9 Slip Conditions and Interlock Handling

k cycle
 the I

ime,
I cache

ramming
.

advance and/or complete in the pipeline; however, I8 and I9 cannot start. After the cache miss is resolved in cloc
4 and the first word of I7 is written to the cache, the pipeline is restarted, causing I7 instruction to advance from
stage to the D stage in clock 5.

In the fifth clock cycle, a DTLB miss is detected for I6, which causes a two-cycle slip of the M stage. During this t
instructions I7, I8, and I9, can continue to advance in the pipeline, eliminating any possible bubbles caused by the
miss on I7.

Most instructions can be issued at a rate of one-per-clock. In some cases, in order to ensure a sequential prog
model, the issuance of an instruction is delayed to ensure that the results of a prior instruction will be availableTable
2-6 lists the instruction interactions that delay the issue of an instruction to the pipeline.

Table 2-6 Instruction Interlocks

First Instruction Following Instruction(s) Issue Delay (in
Clock Cycles)

Slip Stage

Any
JR or JALR without any data
dependency on previous
instruction

1 D stage

Any
JR or JALR that consumes
data from previous
instruction

2 D/R stage

LB/LBU/LH/LHU/LL/LW/LWL/LWR,
LWU/LLD/LD/LDL/LDR,
MFC0/DMFC0/MFC1/DMFC1/CFC1,
MFC2/DMFC2/CFC2,
MFHI/MFLO/MUL,
SC/SCD

JR or JALR that consumes
data from previous
instruction

3 D/R stage

LB/LBU/LH/ LHU/LL/LW/ LWL/LWR,
LWU/LLD/LD/LDL/LDR

Instruction that consumes
load data 1 R stage

MFC0/DMFC0/MFC1/DMFC1/CFC1,
MFC2/DMFC2/CFC2

Instruction that consumes
data in a target register 1 R stage

Any TLBR 1 M stage

TLBWR/TLBWI TLBWR/TLBWI
TLBR/TLBP 2 M stage

TLBWR/TLBWI

Any instruction accessing
JTLB (i.e., I-fetch, load,
store, PREF, PREFX,
CACHE miss in ITLB or
DTLB)

2 M stage

SC/SCD Consumer of fail/success
status 1 R stage

MFHI/MFLO Consumer of destination
register 1 R stage

MULT/MULTU
DMULT/ DMULTU
MADD/ MADDU
MSUB/ MSUBU

32x16 MFLO/MFHI followed by N
instructions not using
destination register followed
by consumer of destination
registera

2-N

R stage32x32 3-N

64x64 10-N

MUL

32x16 N instructions not using
destination register followed
by consumer of destination
register

3-N

R stage
32x32 4-N
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 23

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline
MULT/MULTU
MUL
MADD/MADDU
MSUB/MSUBU

32x16 MULT/MULTU
DMULT/DMULTU
MUL/MADD/MADDU
MSUB/MSUBU
MTHI/MTLO

0

R stage
32x32 1

DMULT/DMULTU

32x16
MULT/MULTU
DMULT/DMULTU
MUL

0

R stage32x32 1

64x64 8

DMULT/DMULTU

32x16
MADD/MADDU
MSUB/MSUBU
MTHI/MTLO

1

R stage32x32 2

64x64 9

MTHI/MTLO DIV/DIVU/DDIV/DDIVU 2 R stage

MULT/MULTU
DMULT/DMULTU
MUL
MADD/MADDU
MSUB/MSUBU

32x16

DIV/DIVU/DDIV/DDIVU

2

R stage32x32 3

64x64 11

DIV/DIVU
DDIV/DDIVU

8/32 or 8/64
MFLO/MFHI followed by N
instructions not using
destination register followed
by consumer of destination
registera

12-N R stage

16/32 or 16/64 20-N R stage

24/32 or 24/64 28-N R stage

32/32 or 32/64 36-N R stage

DDIV/DDIVU

40/64
MFLO/MFHI followed by N
instructions not using
destination register followed
by consumer of destination
registera

44-N R stage

48/64 52-N R stage

56/64 60-N R stage

64/64 68-N R stage

DIV/DIVU

DDIV/DDIVU

8/32 or 8/64

MULT/MULTU
DMULT/DMULTU
MUL

10 R stage

16/32 or 16/64 18 R stage

24/32 or 24/64 26 R stage

32/32 or 32/64 34 R stage

DDIV/DDIVU

40/64

MULT/MULTU
DMULT/DMULTU
MUL

42 R stage

48/64 50 R stage

56/64 58 R stage

64/64 66 R stage

Table 2-6 Instruction Interlocks (Continued)

First Instruction Following Instruction(s) Issue Delay (in
Clock Cycles)

Slip Stage
24 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

2.9 Slip Conditions and Interlock Handling
DIV/DIVU
DDIV/DDIVU

8/32 or 8/64

MADD/MADDU
MSUB/MSUBU
MTHI/MTLO

11 R stage

16/32 or 16/64 19 R stage

24/32 or 24/64 27 R stage

32/32 or 32/64 35 R stage

DDIV/DDIVU

40/64

MADD/MADDU
MSUB/MSUBU
MTHI/MTLO

43 R stage

48/64 51 R stage

56/64 59 R stage

64/64 67 R stage

DIV/DIVU
DDIV/DDIVU

8/32 or 8/64

DIV/DIVU
DDIV/DDIVU

12 R stage

16/32 or 16/64 20 R stage

24/32 or 24/64 28 R stage

32/32 or 32/64 36 R stage

DDIV/DDIVU

40/64

DIV/DIVU
DDIV/DDIVU

44 R stage

48/64 52 R stage

56/64 60 R stage

64/64 68 R stage

a. If a multiply or divide instruction is in progress, MFHI/MFLO instructions cannot immediately return the result. This does not cause a slip
in the pipeline unless a subsequent instruction uses the result from the MFHI/MFLO.

Table 2-6 Instruction Interlocks (Continued)

First Instruction Following Instruction(s) Issue Delay (in
Clock Cycles)

Slip Stage
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 25

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline
26 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

e

ith the

 key

t. The
ns as an
es not

square
ounts,

E
dd,
Chapter 3

Floating-Point Unit

This chapter describes the MIPS64 Floating-Point Unit (FPU) included in the 5Kf core. This chapter contains th
following sections:

• Section 3.1, "Features Overview"

• Section 3.2, "Enabling the Floating-Point Coprocessor"

• Section 3.3, "Data Formats"

• Section 3.4, "Floating-Point General Registers"

• Section 3.5, "Floating-Point Control Registers"

• Section 3.6, "Instruction Overview"

• Section 3.7, "Exceptions"

• Section 3.8, "Pipeline and Performance"

3.1 Features Overview

The FPU is provided via Coprocessor 1. Together with its dedicated system software, the FPU fully complies w
ANSI/IEEE Standard 754-1985,IEEE Standard for Binary Floating-Point Arithmetic. The MIPS architecture supports
the recommendations of IEEE Standard 754, and the coprocessor implements a precise exception model. The
features of the FPU are listed below:

• Full 64-bit operation is implemented in both the register file and functional units.

• A 32-bit Floating-Point Control Register controls the operation of the FPU, and monitors condition codes and
exception conditions.

• Like the main processor core, Coprocessor 1 is programmed and operated using a Load/Store instruction se
processor core communicates with Coprocessor 1 using a dedicated coprocessor interface. The FPU functio
autonomous unit. The hardware is completely interlocked such that, when writing software, the programmer do
have to worry about inserting delay slots after loads and between dependent instructions.

• The FPU can dual issue arithmetic and load/store instructions, whereby arithmetic operations can operate
continuously while data is provided and retrieved. Details about dual issuing are provided inSection 2.4, "Limited
Dual Issue".

• Additional arithmetic operations not specified by IEEE Standard 754 (for example, reciprocal and reciprocal
root) are specified by the MIPS architecture and are implemented by the FPU. In order to achieve low latency c
these instructions satisfy more relaxed precision requirements.

• The MIPS architecture further specifies compound multiply-add instructions. These instructions meet the IEE
accuracy specification where the result is numerically identical to an equivalent computation using multiply, a
subtract, or negate instructions.

Figure 3-1 depicts a block diagram of the FPU.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 27

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

nt the
ed
ral, the
pter. A
results

pt
Figure 3-1 FPU Block Diagram

The MIPS architecture is designed such that a combination of hardware and software can be used to impleme
architecture. The 5Kf core FPU can operate on numbers within a specific range (in general, the IEEE normaliz
numbers), but it relies on a software handler to operate on numbers not handled by the FPU hardware (in gene
IEEE denormalized numbers). Supported number ranges for different instructions are described later in this cha
fast Flush To Zero mode is provided to optimize performance for cases where IEEE denormalized operands and
are not supported by hardware. The fast Flush to Zero mode is enabled through the CP1FCSRregister; use of this mode
is recommended for best performance.

3.1.1 IEEE Standard 754

The IEEE Standard 754-1985,IEEE Standard for Binary Floating-Point Arithmetic, is referred to in this chapter as
“IEEE Standard 754”. IEEE Standard 754 defines the following:

• Floating-point data types

• The basic arithmetic, comparison, and conversion operations

• A computational model

IEEE Standard 754 does not define specific processing resources nor does it define an instruction set.

For more information about this standard, see the IEEE web page athttp://stdsbbs.ieee.org/ .

3.2 Enabling the Floating-Point Coprocessor

Coprocessor 1 is enabled through the CU1 bit in the CP0Statusregister. When Coprocessor 1 is not enabled, any attem
to execute a floating-point instruction causes a Coprocessor Unusable exception.

3.3 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

• The single- and double-precision floating-point data types are those specified by IEEE Standard 754.

• The fixed-point types are signed integers provided by the CPU architecture.

Processor
Core

Coprocessor
Interface

Control

Register File

Bypass

Add

Div/Sqrt Mul Load/
Store
28 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.3 Data Formats

izes are
3.3.1 Floating-Point Formats

The FPU provides the following two floating-point formats:

• a 32-bit single-precision floating point (type S, shown inFigure 3-2)

• a 64-bit double-precision floating point (type D, shown inFigure 3-3)

The floating-point data types represent numeric values as well as the following special entities:

• Two infinities,+∞ and -∞

• Signaling non-numbers (SNaNs)

• Quiet non-numbers (QNaNs)

• Numbers of the form: (-1)s 2E b0.b1 b2..bp-1, where:

– s = 0 or 1

– E = any integer between E_min and E_max, inclusive

– bi = 0 or 1 (the high bit, b0, is to the left of the binary point)

– p is the signed-magnitude precision

The single and double floating-point data types are composed of three fields—sign, exponent, fraction—whose s
listed inTable 3-1.

Layouts of these three fields are shown in Figures3-2 and3-3 below. The fields are:

• 1-bit sign,s

• Biased exponent,e = E + bias

• Binary fraction,f=.b1 b2..bp-1 (theb0 bit is hidden; it is not recorded)

Figure 3-2 Single-Precision Floating-Point Format (S)

Table 3-1 Parameters of Floating-Point Data Types

Parameter Single Double

Bits of mantissa precision, p 24 53

Maximum exponent, E_max +127 +1023

Minimum exponent, E_min -126 -1022

Exponentbias +127 +1023

Bits in exponent field,e 8 11

Representation of b0 integer bit hidden hidden

Bits in fraction field,f 23 52

Total format width in bits 32 64

Magnitude of largest representable number 3.4028234664e+38 1.7976931349e+308

Magnitude of smallest normalized representable number 1.1754943508e-38 2.2250738585e-308

31 30 23 22 0

S Exponent Fraction

1 8 23
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 29

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

are kept
” and
lue

s,
ion
esult
ormat

that the
nt these
Figure 3-3 Double-Precision Floating-Point Format (D)

Values are encoded in the specified format using the unbiased exponent, fraction, and sign values listed inTable 3-2. The
high-order bit of the Fraction field, identified as b1, is also important for NaNs.

3.3.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers
in normalized form. The high-order bit of the p-bit mantissa, which lies to the left of the binary point, is “hidden,
not recorded in theFractionfield. The encoding rules permit the value of this bit to be determined by looking at the va
of the exponent. When the unbiased exponent is in the rangeE_minto E_max, inclusive, the number is normalized and
the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be less thanE_min,
then the representation is denormalized, the encoded number has an exponent ofE_min– 1, and the hidden bit has the
value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

3.3.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal IEEE exception conditions, such as those caused by uninitialized variable
violations of mathematical rules, or results that cannot be represented. If a program does not trap IEEE except
conditions, a computation that encounters any of these conditions proceeds without trapping but generates a r
indicating that an exceptional condition arose during the computation. To permit this case, each floating-point f

63 62 52 51 0

S Exponent Fraction

1 11 52

Table 3-2 Value of Single or Double Floating-Point Data Type Encoding

Unbiased E f s b1 Value V Type of Value TypicalSingle
Bit Patterna

a. The “Typical” nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign might have either value (NaN) and
fraction field might have any non-zero value (both). As such, the bit patterns shown are one value in a class of potential values that represe
special values.

Typical Double
Bit Patterna

E_max + 1 ≠ 0
1 SNaN Signaling NaN 0x7fffffff 0x7fffffff ffffffff

0 QNaN Quiet NaN 0x7fbfffff 0x7ff7ffff ffffffff

E_max +1 0
1 - ∞ Minus infinity 0xff800000 0xfff00000 00000000

0 + ∞ Plus infinity 0x7f800000 0x7ff00000 00000000

E_max
 to

E_min

1 - (2E)(1.f) Negative normalized
number

0x80800000
 through
0xff7fffff

0x80100000 00000000
 through
0xffefffff ffffffff

0 + (2E)(1.f) Positive normalized number
0x00800000
 through
0x7f7fffff

0x00100000 00000000
 through
0x7fefffff ffffffff

E_min -1 ≠ 0

1 - (2E_min)(0.f) Negative denormalized
number 0x807fffff 0x800fffff ffffffff

0 + (2E_min)(0.f) Positive denormalized
number 0x007fffff 0x00ffffff ffffffff

E_min -1 0
1 - 0 Negative zero 0x80000000 0x80000000 00000000

0 + 0 positive zero 0x00000000 0x00000000 00000000
30 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.3 Data Formats

gnitude
nd

such

s.

t in

d

4

gation
rations

livered,
one
-point
are

 is not
lue
4 when

hat
defines representations (listed inTable 3-2) for plus infinity (+∞), minus infinity (-∞), quiet non-numbers (QNaN), and
signaling non-numbers (SNaN).

3.3.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the given format; it represents a ma
overflow during a computation. A correctly signed∞ is generated as the default result in division by zero operations a
some cases of overflow as described inSection 3.7.2, "Exception Conditions".

Once created as a default result,∞ can become an operand in a subsequent operation. The infinities are interpreted
that -∞ < (every finite number) < +∞. Arithmetic with∞ is the limiting case of real arithmetic with operands of
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on∞ is regarded as exact, and exception
conditions do not arise. The out-of-range indication represented by∞ is propagated through subsequent computation
For some cases, there is no meaningful limiting case in real arithmetic for operands of∞. These cases raise the Invalid
Operation exception condition as described inSection 3.7.2.1, "Invalid Operation Exception".

3.3.1.4 Signalling Non-Number (SNaN)

SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are useful values to pu
uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invali
Operation exception is the implementor’s option.” The MIPS architecture makes the formatted operand move
instructions (MOV.fmt, MOVT.fmt, MOVF.fmt, MOVN.fmt, MOVZ.fmt) non-arithmetic; they do not signal IEEE 75
exceptions.

3.3.1.5 Quiet Non-Number (QNaN)

QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data and results. Propa
of the diagnostic information requires information contained in a QNaN to be preserved through arithmetic ope
and floating-point format conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-point result is to be de
a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is 1 of
the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a floating
result—specifically, comparisons. (For more information, see the detailed description of the floating-point comp
instruction, C.cond.fmt.).

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap
enabled), a new QNaN value is created.Table 3-3shows the QNaN value generated when no input operand QNaN va
can be copied. The values listed for the fixed-point formats are the values supplied to satisfy IEEE Standard 75
a QNaN or infinite floating-point value is converted to fixed point. There is no other feature of the architecture t
detects or makes use of these “integer QNaN” values.

1 In case of one or more QNaN operands, a QNaN is propagated from one of the operands according to the following priority: 1: fs,
2: ft, 3: fr.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 31

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

ed
or

PS32

ats

alues

operand
3.3.2 Fixed-Point Formats

The FPU provides two fixed-point data types:

• a 32-bit Word fixed point (type W), shown inFigure 3-4

• a 64-bit Longword fixed point (type L), shown inFigure 3-5

The fixed-point values are held in 2’s complement format, which is used for signed integers in the CPU. Unsign
fixed-point data types are not provided by the architecture; application software can synthesize computations f
unsigned integers from the existing instructions and data types.

Figure 3-4 Word Fixed-Point Format (W)

Figure 3-5 Longword Fixed-Point Format (L)

3.4 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers (FPRs). To support MI
programs, the MIPS64 5Kf processor core also provides the MIPS32 register model. The FR bit in the CP0Status
register determines which mode is selected:

• When the FR bit is a 1, the MIPS64 register model is selected, which defines 32 64-bit registers with all form
supported in a register.

• When the FR bit is a 0, the MIPS32 register model is selected, which defines 32 32-bit registers with D-format v
stored in even-odd pairs of registers; thus the register file can also be viewed as having 16 64-bit registers.

These registers transfer binary data between the FPU and the system, and are also used to hold formatted FPU
values.

Table 3-3 Value Supplied When a New Quiet NaN is Created

Format New QNaN value

Single floating point 0x7fbf ffff

Double floating point 0x7ff7 ffff ffff ffff

Word fixed point 0x7fff ffff

Longword fixed point 0x7fff ffff ffff ffff

31 0

Integer

32

63 0

Integer

64
32 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.4 Floating-Point General Registers

e value.

oding of
can be

t is

ormat
e

f a

 an

 transfer

.

3.4.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify the Floating-Point Register (FPR) that holds th
Operands that are only 32 bits wide (W andS formats) use only half the space in an FPR.

Figures3-6 and3-7 show the FPR organization and the way that operand data is stored in them.

Figure 3-6 Single Floating-Point or Word Fixed-Point Operand in an FPR

Figure 3-7 Double Floating-Point or Longword Fixed-Point Operand in an FPR

3.4.2 Formats of Values Used in FP Registers

Unlike the CPU, the FPU neither interprets the binary encoding of source operands nor produces a binary enc
results for every operation. The value held in a floating-point operand register (FPR) has a format, or type, and it
used only by instructions that operate on that format. The format of a value is eitheruninterpreted, unknown, or one of
the valid numeric formats:single or double floating point, andword or long fixed point.

The value in an FPR is always set when a value is written to the register as follows:

• When a data transfer instruction writes binary data into an FPR (a load), the FPR receives a binary value tha
uninterpreted.

• A computational or FP register move instruction that produces a result of typefmt puts a value of typefmt into the
result register.

When an FPR with anuninterpreted value is used as a source operand by an instruction that requires a value of f
fmt, the binary contents are interpreted as an encoded value in formatfmt, and the value in the FPR changes to a valu
of formatfmt. The binary contents cannot be reinterpreted in a different format.

If an FPR contains a value of formatfmt, a computational instruction must not use the FPR as a source operand o
different format. If this case occurs, the value in the register becomesunknown, and the result of the instruction is also
a value that isunknown. Using an FPR containing anunknown value as a source operand produces a result that has
unknown value.

The format of the value in the FPR is unchanged when it is read by a data transfer instruction (a store). A data
instruction produces a binary encoding of the value contained in the FPR. If the value in the FPR isunknown, the encoded
binary value produced by the operation is not defined.

The state diagram inFigure 3-8 illustrates the manner in which the formatted value in an FPR is set and changed

63 32 31 0

Reg 0 Undefined/Unused Data Word

63 0

Reg 0 Data Doubleword/Longword
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 33

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

system.

 load or
Figure 3-8 Effect of FPU Operations on the Format of Values Held in FPRs

3.4.3 Binary Data Transfers (32-Bit and 64-Bit)

The data transfer instructions move words and doublewords between the FPU FPRs and the remainder of the
The operations of the word and doubleword load and move-to instructions are shown inFigure 3-9 andFigure 3-10,
respectively.

The store and move-from instructions operate in reverse, reading data from the location that the corresponding
move-to instruction had written.

A, B: Example formats
Load: Destination of LWC1, LDC1, MTC1, or DMTC1 instructions.
Store: Source operand of SWC1, SDC1, MFC1, or DMFC1 instructions.
Src fmt: Source operand of computational instruction expecting format “fmt.”
Rslt fmt: Result of computational instruction producing value of format “fmt.”

Load
Store

Rslt unknown
Rslt A Rslt B

Src A
(interpret)

Src B
(interpret)

B Load

Rslt A

Src B Src A

Rslt A Rslt B

Rslt
unknown

Rslt
unknown

Src A
Src B
Store Load

Src A
Rslt A
Store

Src B
Rslt B
Store

Value in
Format

A

Value
uninterpreted

(binary
encoding)

Value in
Format

B

Value
unknown
34 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.5 Floating-Point Control Registers

:

Figure 3-9 FPU Word Load and Move-to Operations

Figure 3-10 FPU Doubleword Load and Move-to Operations

3.5 Floating-Point Control Registers

The FPU Control Registers (FCRs) identify and control the FPU. The five FPU control registers are 32 bits wideFIR,
FCCR, FEXR, FENR, FCSR. Three of these registers,FCCR, FEXR, andFENR, select subsets of the floating-point
Control/Status register, theFCSR. These registers are also denoted Coprocessor 1 (CP1) control registers.

Reg 0

Reg 1

63 0
FR BIT = 1 FR BIT = 0

Reg 0

Reg 1

Reg 0

Reg 1

Initial value 1

Initial value 2

Undefined/Unused Data word (0)

Initial value 2

Undefined/Unused

Undefined/Unused

Data word (0)

Data word (4)

63 0

63 0

63 0

63 0

63 0

Reg 0

Reg 2

Reg 0

Reg 2

Reg 0

Reg 2

Undefined/Unused Data word (0)

Initial value 2

Data word (4) Data word (0)

Initial value 2

Initial value 1

Initial value 2

LWC1 f0, 0(r0) / MTC1 f0,r0

LWC1 f1, 4(r0) / MTC1 f1,r4

Reg 0

Reg 1

63 0

FR BIT = 1 FR BIT = 0

Initial value 1

Initial value 2

Data doubleword (0)

63 0

63 0

63 0

Reg 0

Reg 2

LDC1 f0, 0(r0) / DMTC1 f0,r0

LDC1 f1, 8(r0) / DMTC1 f1,r8

Reg 0

Reg 1

Reg 0

Reg 1

Initial value 1

Initial value 2

Reg 0

Reg 2 Initial value 2

Data doubleword (0)

Data doubleword (8)

63 0

(Illegal when FR BIT = 0)

Data doubleword (0)
Initial value 2
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 35

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

U.

are

ead

s

CP1 control registers are summarized inTable 3-4 and are described individually in the following subsections of this
chapter. Each register’s description includes the read/write properties and the reset state of each field.

Table 3-5 defines the notation used for the read/write properties of the register bit fields.

Table 3-4 Coprocessor 1 Register Summary

Register Number Register Name Function

0 FIR Floating-Point Implementation register. Contains information that identifies the FP

25 FCCR Floating-Point Condition Codes register.

26 FEXR Floating-Point Exceptions register.

28 FENR Floating-Point Enables register.

31 FCSR Floating-Point Control and Status register.

Table 3-5 Read/Write Properties

Read/Write
Notation

Hardware Interpretation Software Interpretation

R/W All bits in this field are readable and writable by software and potentially by hardware.

Hardware updates of this field are visible by software reads. Software updates of this field are visible by hardw
reads.

If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the first r
returns a predictable value. This definition should not be confused with the formal definition of UNDEFINED
behavior.

R This field is either static or is updated only by hardware.

If the Reset State of this field is either “0” or “Preset”,
hardware initializes this field to zero or to the appropriate
state, respectively, on powerup.

If the Reset State of this field is “Undefined”, hardware
updates this field only under those conditions specified in
the description of the field.

A field to which the value written by software is ignored
by hardware. Software may write any value to this field
without affecting hardware behavior. Software reads of
this field return the last value updated by hardware.

If the Reset State of this field is “Undefined,” software
reads of this field result in an UNPREDICTABLE value
except after a hardware update done under the condition
specified in the description of the field.

0 Hardware does not update this field. Hardware can
assume a zero value.

The value software writes to this field must be zero.
Software writes of non-zero values to this field might
result in UNDEFINED behavior of the hardware.
Software reads of this field return zero as long as all
previous software writes are zero.

If the Reset State of this field is “Undefined,” software
must write this field with zero before it is guaranteed to
read as zero.
36 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.5 Floating-Point Control Registers

e

3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)

The Floating-Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying th
capabilities of the FPU, the Floating-Point processor identification, and the revision level of the FPU.Figure 3-11shows
the format of theFIR; Table 3-6 describes theFIR bit fields.

Figure 3-11 FIR Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 3D PS D S ProcessorID Revision

Table 3-6 FIR Bit Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

3D 19 Indicates that the MIPS-3D ASE is implemented:
 0: MIPS-3D not implemented
 1: MIPS-3D implemented

This bit is always 0 to indicate that MIPS-3D is not
implemented.

R 0

PS 18 Indicates that the paired-single (PS) floating-point data
type and instructions are implemented:
 0: PS floating-point not implemented
 1: PS floating-point implemented

This bit is always 0 to indicate that paired-single
floating-point data types are not implemented.

R 0

D 17 Indicates that the double-precision (D) floating-point data
type and instructions are implemented:
 0: D floating-point not implemented
 1: D floating-point implemented

This bit is always 1 to indicate that double-precision
floating-point data types are implemented.

R 1

S 16 Indicates that the single-precision (S) floating-point data
type and instructions are implemented:
 0: S floating-point not implemented
 1: S floating-point implemented

This bit is always 1 to indicate that single-precision
floating-point data types are implemented.

R 1

Processor
ID

15:8 Identifies the floating-point processor. This value matches
the corresponding field of the CP0 PRId register.

R 0x81

Revision 7:0 Specifies the revision number of the FPU. This field allows
software to distinguish between one revision and another
of the same floating-point processor type. This value
matches the corresponding field of the CP0 PRId register.

R Hardwired

0 31:20 These bits must be written as zeros; they return zeros on
reads.

0 0
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 37

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

n

that
3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)

The Floating-Point Condition Codes Register (FCCR) is an alternative way to read and write the floating-point conditio
code values that also appear in theFCSR. Unlike theFCSR, all eight FCC bits are contiguous in theFCCR. Figure 3-12
shows the format of theFCCR; Table 3-7 describes theFCCR bit fields.

Figure 3-12 FCCR Format

3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)

The Floating-Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flags fields
also appear in theFCSR. Figure 3-13 shows the format of theFEXR; Table 3-8 describes theFEXR bit fields.

Figure 3-13 FEXR Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 FCC

Table 3-7 FCCR Bit Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

FCC 7:0 Floating-point condition code. Refer to the description
of this field inSection 3.5.5, "Floating-Point Control
and Status Register (FCSR, CP1 Control Register 31)".

R/W Undefined

0 31:8 These bits must be written as zeros; they return zeros on
reads.

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Cause 0 Flags 0

E V Z O U I V Z O U I

Table 3-8 FEXR Bit Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

Cause 17:12 Cause bits. Refer to the description of this field inSection
3.5.5, "Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".

R/W Undefined

Flags 6:2 Flag bits. Refer to the description of this field inSection
3.5.5, "Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".

R/W Undefined

0 31:18,
11:7, 1:0

These bits must be written as zeros; they return zeros on
reads.

0 0
38 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.5 Floating-Point Control Registers

hat

g

e

3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)

The Floating-Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields t
also appear in theFCSR. Figure 3-14 shows the format of theFENR; Table 3-9 describes theFENR bit fields.

Figure 3-14 FENR Format

3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)

The 32-bit Floating-Point Control and Status Register (FCSR) controls the operation of the FPU and shows the followin
status information:

• selects the default rounding mode for FPU arithmetic operations

• selectively enables traps of FPU exception conditions

• controls some denormalized number handling options

• reports any IEEE exceptions that arose during the most recently executed instruction

• reports any IEEE exceptions that cumulatively arose in completed instructions

• indicates the condition code result of FP compare instructions

Access to theFCSR is not privileged; it can be read or written by any program that has access to the FPU (via th
coprocessor enables in theStatus register).Figure 3-15 shows the format of theFCSR; Table 3-10 describes theFCSR
bit fields.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enables 0 FS RM

V Z O U I

Table 3-9 FENR Bit Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

Enables 11:7 Enable bits. Refer to the description of this field inSection
3.5.5, "Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".

R/W Undefined

FS 2 Flush to Zero bit. Refer to the description of this field in
Section 3.5.5, "Floating-Point Control and Status Register
(FCSR, CP1 Control Register 31)".

R/W Undefined

RM 1:0 Rounding mode. Refer to the description of this field in
Section 3.5.5, "Floating-Point Control and Status Register
(FCSR, CP1 Control Register 31)".

R/W Undefined

0 31:12,
6:3

These bits must be written as zeros; they return zeros on
reads.

0 0
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 39

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit
Figure 3-15 FCSR Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FCC FS FCC FO FN 0 Cause Enables Flags RM

7 6 5 4 3 2 1 0 E V Z O U I V Z O U I V Z O U I

Table 3-10 FCSR Bit Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit

FCC 31:25,
23

Floating-point condition codes. These bits record the
result of floating-point compares and are tested for
floating-point conditional branches and conditional
moves. The FCC bit to use is specified in the compare,
branch, or conditional move instruction. For backward
compatibility with previous MIPS ISAs, the FCC bits are
separated into two non-contiguous fields.

R/W Undefined

FS 24 Flush to Zero (FS). Refer toSection 3.5.6, "Operation of
the FS/FO/FN Bits" for more details on this bit.

R/W Undefined

FO 22 Flush Override (FO). Refer toSection 3.5.6, "Operation
of the FS/FO/FN Bits" for more details on this bit.

R/W Undefined

FN 21 Flush to Nearest (FN). Refer toSection 3.5.6, "Operation
of the FS/FO/FN Bits" for more details on this bit.

R/W Undefined

Cause 17:12 Cause bits. These bits indicate the exception conditions
that arise during execution of an FPU arithmetic
instruction. A bit is set to 1 when the corresponding
exception condition arises during the execution of an
instruction; otherwise, it is cleared to 0. By reading the
registers, the exception condition caused by the preceding
FPU arithmetic instruction can be determined.

Refer toTable 3-11 for the meaning of each cause bit.

R/W Undefined

Enables 11:7 Enable bits. These bits control whether or not a trap is
taken when an IEEE exception condition occurs for any of
the five conditions. The trap occurs when both an enable
bit and its corresponding cause bit are set either during an
FPU arithmetic operation or by moving a value to the
FCSR or one of its alternative representations. Note that
Cause bit E (CauseE) has no corresponding enable bit; the
MIPS architecture defines non-IEEE Unimplemented
Operation exceptions as always enabled.

Refer toTable 3-11 for the meaning of each enable bit.

R/W Undefined

Flags 6:2 Flag bits. This field shows any exception conditions that
have occurred for completed instructions since the flag
was last reset by software.

When an FPU arithmetic operation raises an IEEE
exception condition that does not result in a
Floating-Point Exception (the enable bit was off), the
corresponding bit(s) in the Flags field are set, while the
others remain unchanged. Arithmetic operations that
result in a Floating-Point Exception (the enable bit was
on) do not update the Flags field.

Hardware never resets this field; software must explicitly
reset this field.

Refer toTable 3-11 for the meaning of each flag bit.

R/W Undefined
40 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.5 Floating-Point Control Registers

uch
ecause
at a

r,
3.5.6 Operation of the FS/FO/FN Bits

The FS, FO, and FN bits in the CP1FCSR register control handling of denormalized operands andtiny results (i.e.
nonzero result between±2E_min), whereby the FPU can handle these cases right away instead of relying on the m
slower software handler. The trade-off is a loss of IEEE compliance and accuracy (except for use of the FO bit), b
a minimal normalized or zero result is provided by the FPU instead of the more accurate denormalized result th
software handler would give. The benefit is a significantly improved performance and precision.

RM 1:0 Rounding mode. This field indicates the rounding mode
used for most floating-point operations (some operations
use a specific rounding mode).

Refer toTable 3-12 for the encoding of this field.

R/W Undefined

0 20:18 These bits must be written as zeros; they return zeros on
reads.

0 0

Table 3-11 Cause, Enables, and Flags Definitions

Bit Name Bit Meaning

E Unimplemented Operation (this bit exists only in the Cause field).

V Invalid Operations

Z Divide by Zero

O Overflow

U Underflow

I Inexact

Table 3-12 Rounding Mode Definitions

RM Field
Encoding

Meaning

0 RN - Round to Nearest

Rounds the result to the nearest representable value. When two representable values are equally nea
the result is rounded to the value whose least significant bit is zero (even).

1 RZ - Round Toward Zero

Rounds the result to the value closest to but not greater in magnitude than the result.

2 RP - Round Towards Plus Infinity

Rounds the result to the value closest to but not less than the result.

3 RM - Round Towards Minus Infinity

Rounds the result to the value closest to but not greater than the result.

Table 3-10 FCSR Bit Field Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bit
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 41

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

perands

t are

 either
.

ded
os
Use of the FS, FO, and FN bits affects handling of denormalized floating-point numbers and tiny results for the
instructions listed below:

Instructions not listed above do not cause Unimplemented Operation exceptions on denormalized numbers in o
or results.

Figure 3-16 depicts how the FS, FO, and FN bits control handling of denormalized numbers. For instructions tha
not multiply or add types (such as DIV), only the FS and FN bits apply.

Figure 3-16 FS/FO/FN Bits Influence on Multiply and Addition Results

3.5.6.1 Flush To Zero Bit

When the Flush To Zero (FS) bit is set, denormal input operands are flushed to zero. Tiny results are flushed to
zero or the applied format’s smallest normalized number (MinNorm) depending on the rounding mode settingsTable
3-13 lists the flushing behavior for tiny results..

The flushing of results is based on an intermediate result computed by rounding the mantissa using an unboun
exponent range; that is, tiny numbers are notnormalizedinto the supported exponent range by shifting in leading zer
prior to rounding.

Handling of denormalized operand values and tiny results depends on the FS bit setting as shown inTable 3-14.

FS and FN bit: ADD, CEIL, CVT, DIV, FLOOR, MADD, MSUB, MUL, NMADD, NMSUB,
RECIP, ROUND, RSQRT, SQRT, TRUNC, SUB, ABS, C.cond, and NEGa

a. For ABS, C.cond, and NEG, denormal input operands or tiny results doe not result in Unimplemented excep-
tions when FS = 1. Flushing to zero nonetheless is implemented such that these operations return the same
result as an equivalent sequence of arithmetic FPU operations.

FO bit: MADD, MSUB, NMADD, and NMSUB

Table 3-13 Zero Flushing for Tiny Results

Rounding Mode Negative Tiny Result Positive Tiny Result

RN (RM=0) -0 +0

RZ(RM=1) -0 +0

RP (RM=2) -0 +MinNorm

RM (RM=3) -MinNorm +0

Table 3-14 Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting

FS Bit Handling of Denormalized Operand Values

0 An Unimplemented Operation exception is taken.

1 Instead of causing an Unimplemented Operation exception, operands are flushed to zero,
and tiny results are forced to zero or MinNorm.

Operand values
FS applies

AdditionMultiply

Intermediate Multiply-Add result
FS/FO applies

Final result
FS/FN applies
42 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.5 Floating-Point Control Registers

shed
cy. FO

ushed
hed
N bit

zero or
3.5.6.2 Flush Override Bit

When the Flush Override (FO) bit is set, a tiny intermediate result of any multiply-add type instruction is not flu
according to the FS bit. The intermediate result is maintained in an internal normalized format to improve accura
only applies to the intermediate result of a multiply-add type instruction.

Handling of tiny intermediate results depends on the FO and FS bits as shown inTable 3-15.

3.5.6.3 Flush to Nearest

When the Flush to Nearest (FN) bit is set and the rounding mode is Round to Nearest (RN), a tiny final result is fl
to zero or MinNorm. If a tiny number is strictly below MinNorm/2, the result is flushed to zero; otherwise, it is flus
to MinNorm (seeFigure 3-17). The flushed result has the same sign as the result prior to flushing. Note that the F
takes precedence over the FS bit.

Figure 3-17 Flushing to Nearest when Rounding Mode is Round to Nearest

For all rounding modes other than Round to Nearest (RN), setting the FN bit causes final results to be flushed to
MinNorm as if the FS bit was set.

Handling of tiny final results depends on the FN and FS bits as shown inTable 3-16.

Table 3-15 Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings

FO Bit FS Bit Handling of Tiny Result Values

0 0 An Unimplemented Operation exception is taken.

0 1 The intermediate result is forced to the value that would have been delivered for an
untrapped underflow (seeTable 3-34) instead of causing an Unimplemented Operation
exception.

1 Don’t care The intermediate result is kept in an internal format, which can be perceived as having the
usual mantissa precision but with unlimited exponent precision and without forcing to a
specific value or taking an exception.

Table 3-16 Handling of Tiny Final Result Based on FN and FS Bit Settings

FN Bit FS Bit Handling of Tiny Result Values

0 0 An Unimplemented Operation exception is taken.

0 1 Final result is forced to the value that would have been delivered for an untrapped underflow
(seeTable 3-34) rather than causing an Unimplemented Operation exception.

1 Don’t care Final result is rounded to either zero or 2E_min (MinNorm), whichever is closest when in
Round to Nearest (RN) rounding mode. For other rounding modes, a final result is given as
if FS was set to 1.

MinNorm/2-MinNorm/2

-MinNorm MinNorm0
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 43

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

 for

se a trap,

and
set if a

 be set
pported

= 1).

 cause a
3.5.6.4 Recommended FS/FO/FN Settings

Table 3-17 summarizes the recommended FS/FO/FN settings.

3.5.7 FCSR Cause Bit Update Flow

3.5.7.1 Exceptions Triggered by CTC1

Regardless of the targeted control register, the CTC1 instruction causes the Enables and Cause fields of theFCSRto be
inspected in order to determine if an exception is to be thrown.

3.5.7.2 Generic Flow

Computations are performed in two steps:

1. Compute rounded mantissa with unbound exponent range.

2. Flush to default result if the result from Step #1 above is overflow or tiny (no flushing happens on denorms
instructions supporting denorm results, such as MOV).

The Cause field is updated after each of these two steps. Any enabled exceptions detected in these two steps cau
and no further updates to the Cause field are done by subsequent steps.

Step #1 can set cause bits I, U, O, Z, V, and E. E has priority over V; V has priority over Z; and Z has priority over U
O. Thus when E, V, or Z is set in Step #1, no other cause bits can be set. However, note that I and V both can be
denormal operand was flushed (FS = 1). I, U, and O can be set alone or in pairs (IU or IO). U and O never can
simultaneously in Step #1. U and O are set if the computed unbounded exponent is outside the exponent range su
by the normalized IEEE format.

Step #2 can set I if a default result is generated.

3.5.7.3 Multiply-Add Flow

For multiply-add type instructions, the computation is extended with two more steps:

1. Compute rounded mantissa with unbound exponent range for the multiply.

2. Flush to default result if the result from Step #1 is overflow or tiny (no flushing happens on tiny results if FO

3. Compute rounded mantissa with unbounded exponent range for the add.

4. Flush to default result if the result from Step #3 is overflow or tiny.

The Cause field is updated after each of these four steps. Any enabled exceptions detected in these four steps
trap, and no further updates to the Cause field are done by subsequent steps.

Table 3-17 Recommended FS/FO/FN Settings

FS Bit FO Bit FN Bit Remarks

0 0 0 IEEE-compliant mode. Low performance on denormal operands and tiny
results.

1 0 0 Regular MIPS64 embedded applications. High performance on denormal
operands and tiny results.

1 1 1 Highest accuracy and performance configuration.a

a. Note that in this mode, MADD might return a different result other than the equivalent MUL and ADD operation sequence.
44 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.6 Instruction Overview

d has

rm set I

NaN

sed E to
n an

s (FCRs).
s. The
tem with
rmat
Step #1 and Step #3 can set a cause bit as described for Step #1 inSection 3.5.7.2, "Generic Flow".

Step #2 and Step #4 can set I if a default result is generated.

Although U and O can never both be set in Step #1 or Step #3, both U and O might be set after the multiply-ad
executed in Step #3 because U might be set in Step #1 and O might be set in Step #3.

3.5.7.4 Cause Update Flow for Input Operands

Denormal input operands to Step #1 or Step #3 always set Cause bit I when FS = 1. For example, SNaN+DeNo
(and V) provided that Step #3 was reached (in case of a multiply-add type instruction).

Conditions directly related to the input operand (for example, I/E set due to DeNorm, V set due to SNaN and Q
propagation) are detected in the step where the operand is logically used. For example, for multiply-add type
instructions, exceptional conditions caused by the input operand fr are detected in Step #3.

3.5.7.5 Cause Update Flow for Unimplemented Operations

Note that Cause bit E is special; it clears any Cause updates done in previous steps. For example, if Step #3 cau
be set, any I, U, or O Cause update done in Step #1 or Step #2 is cleared. Only E is set in the Cause field whe
Unimplemented Operation trap is taken.

3.6 Instruction Overview

The functional groups into which the FPU instructions are divided are described in the following subsections:

• Section 3.6.1, "Data Transfer Instructions"

• Section 3.6.2, "Arithmetic Instructions"

• Section 3.6.3, "Conversion Instructions"

• Section 3.6.4, "Formatted Operand-Value Move Instructions"

• Section 3.6.5, "Conditional Branch Instructions"

• Section 3.6.6, "Miscellaneous Instructions"

The instructions are described in detail inChapter 12, “Instructions,” on page 213, including descriptions of supported
formats (fmt).

3.6.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers (FPRs) and coprocessor control register
The FPU has a load/store architecture; all computations are done on data held in coprocessor general register
control registers are used to control FPU operation. Data is transferred between registers and the rest of the sys
dedicated load, store, and move instructions. The transferred data is treated as unformatted binary data; no fo
conversions are performed, and therefore no IEEE floating-point exceptions can occur.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 45

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

ress that
nness),

 is the

the FPU
Table 3-18 lists the supported transfer operations.

3.6.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor loads and stores operate on naturally aligned data items. An attempt to load or store to an add
is not naturally aligned for the data item causes an Address Error exception. Regardless of byte ordering (the endia
the address of a word or doubleword is the smallest byte address in the object. For a big-endian machine, this
most-significant byte; for a little-endian machine, this is the least-significant byte.

3.6.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register+offset addressing as that used by the CPU. Moreover, for
only, there are load and store instructions usingregister+register addressing.

Tables3-19 through3-21 list the FPU data transfer instructions.

Table 3-18 FPU Data Transfer Instructions

Transfer Direction Data Transferred

FPU general register ↔ Memory Word/doubleword load/store

FPU general register ↔ CPU general register Word/doubleword move

FPU control register ↔ CPU general register Word move

Table 3-19 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic Instruction

LDC1 Load Doubleword to Floating Point

LWC1 Load Word to Floating Point

SDC1 Store Doubleword to Floating Point

SWC1 Store Word to Floating Point

Table 3-20 FPU Loads and Stores Using Register+Register Address Mode

Mnemonic Instruction

LDXC1 Load Doubleword Indexed to Floating Point

LUXC1 Load Doubleword Indexed Unaligned to Floating Point

LWXC1 Load Word Indexed to Floating Point

SDXC1 Store Doubleword Indexed to Floating Point

SUXC1 Store Doubleword Indexed Unaligned to Floating Point

SWXC1 Store Word Indexed to Floating Point
46 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.6 Instruction Overview

meet
ecified
in the

except
e CP1

n

3.6.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating-point arithmetic operations
IEEE Standard 754 for accuracy—a result is identical to an infinite-precision result that has been rounded to the sp
format using the current rounding mode. The rounded result differs from the exact result by less than one Unit
Least-significant Place (ULP).

In general, the arithmetic instructions take an Umimplemented Operation exception for denormalized numbers,
for the ABS, C, and NEG instructions, which can handle denormalized numbers. The FS, FO, and FN bits in th
FCSR register can override this behavior as described inSection 3.5.6, "Operation of the FS/FO/FN Bits".

Table 3-22 lists the FPU IEEE compliant arithmetic operations.

The two low latency operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximatio
(RSQRT), might be less accurate than the IEEE specification:

• The result of RECIP differs from the exact reciprocal by no more than one ULP.

• The result of RSQRT differs from the exact reciprocal square root by no more than two ULPs.

Table 3-21 FPU Move To and From Instructions

Mnemonic Instruction

CFC1 Move Control Word From Floating Point

CTC1 Move Control Word To Floating Point

DMFC1 Doubleword Move From Floating Point

DMTC1 Doubleword Move To Floating Point

MFC1 Move Word From Floating Point

MTC1 Move Word To Floating Point

Table 3-22 FPU IEEE Arithmetic Operations

Mnemonic Instruction

ABS.fmt Floating-Point Absolute Value

ADD.fmt Floating-Point Add

C.cond.fmt Floating-Point Compare

DIV.fmt Floating-Point Divide

MUL.fmt Floating-Point Multiply

NEG.fmt Floating-Point Negate

SQRT.fmt Floating-Point Square Root

SUB.fmt Floating-Point Subtract
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 47

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

o

EE
ct, or

verts
unding

ctions
Table 3-23 lists the FPU-approximate arithmetic operations.

Four compound-operation instructions perform variations of multiply-accumulate operations; that is, multiply tw
operands, accumulate the result to a third operand, and produce a result. These instructions are listed inTable 3-24. The
product is rounded according to the current rounding mode prior to the accumulation. This model meets the IE
accuracy specification; the result is numerically identical to an equivalent computation using multiply, add, subtra
negate instructions.

3.6.3 Conversion Instructions

These instructions perform conversions between floating-point and fixed-point data types. Each instruction con
values from a number of operand formats to a particular result format. Some conversion instructions use the ro
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.

Table 3-25shows the supported operand range. An Unimplemented Operation exception is taken for convert instru
applied to numbers that fall outside of the corresponding range.

Table 3-23 FPU-Approximate Arithmetic Operations

Mnemonic Instruction

RECIP.fmt Floating-Point Reciprocal Approximation

RSQRT.fmt Floating-Point Reciprocal Square Root Approximation

Table 3-24 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Instruction

MADD.fmt Floating-Point Multiply Add

MSUB.fmt Floating-Point Multiply Subtract

NMADD.fmt Floating-Point Negative Multiply Add

NMSUB.fmt Floating-Point Negative Multiply Subtract

Table 3-25 Supported Operand Range for Convert Instructions

Operation Supported Operand Range

Convert.S.W 0xFF800000 - 0x007FFFFF

Convert.S. L 0xFFFFFFFFFF800000 - 0x00000000007FFFFF

Convert.D.L 0xFFF8000000000000 - 0x0007FFFFFFFFFFFF

Convert.D.W Can operate on full range

Convert.W.S 0xCAFFFFFF - 0x4AFFFFFF

Convert.W.D 0xC1CFFFFFFFFFFFFF - 0x41CFFFFFFFFFFFFF

Convert.L.S 0xCAFFFFFF - 0x4AFFFFFF

Convert.L.D 0xC32FFFFFFFFFFFFF - 0x432FFFFFFFFFFFFF

CVT.S.D Can operate on full rangea

a. Large and small numbers can cause overflow respectively underflow.

CVT.D.S Can operate on full range
48 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.6 Instruction Overview

The FS

ust be

ination
perand
ation,
In general, the conversion instructions take an Umimplemented Operation exception for denormalized numbers.
and FN bits in the CP1FCSR register can override this behavior as described inSection 3.5.6, "Operation of the
FS/FO/FN Bits".

Table 3-26 andTable 3-27 list the FPU conversion instructions according to their rounding mode.

3.6.4 Formatted Operand-Value Move Instructions

These instructions move formatted operand values among FPU general registers. A particular operand type m
moved by the instruction that handles that type. There are three kinds of move instructions:

• Unconditional move

• Conditional move that tests an FPU true/false condition code

• Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in a way that might be unexpected. They always force the value in the dest
register to become a value of the format specified in the instruction. If the destination register does not contain an o
of the specified format before the conditional move is executed, the contents become undefined. (For more inform
see the individual descriptions of the conditional move instructions in theMIPS64 Architecture Reference Manual,
Volume II.)

Table 3-26 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic Instruction

CVT.D.fmt Floating-Point Convert to Double Floating Point

CVT.L.fmt Floating-Point Convert to Long Fixed Point

CVT.S.fmt Floating-Point Convert to Single Floating Point

CVT.W.fmt Floating-Point Convert to Word Fixed Point

Table 3-27 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction

CEIL.L.fmt Floating-Point Ceiling to Long Fixed Point

CEIL.W.fmt Floating-Point Ceiling to Word Fixed Point

FLOOR.L.fmt Floating-Point Floor to Long Fixed Point

FLOOR.W.fmt Floating-Point Floor to Word Fixed Point

ROUND.L.fmt Floating-Point Round to Long Fixed Point

ROUND.W.fmt Floating-Point Round to Word Fixed Point

TRUNC.L.fmt Floating-Point Truncate to Long Fixed Point

TRUNC.W.fmt Floating-Point Truncate to Word Fixed Point
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 49

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

tions

y
get
ction in

aid to

ard
Table 3-28 throughTable 3-30 list the formatted operand-value move instructions.

3.6.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instruc
(C.cond.fmt).

All branches have an architectural delay of one instruction. When a branch is taken, the instruction immediatel
following the branch instruction is said to be in the branch delay slot; it is executed before the branch to the tar
instruction takes place. Conditional branches come in two versions, depending upon how they handle an instru
the delay slot when the branch is not taken and execution falls through:

• Branch instructions execute the instruction in the delay slot.

• Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are s
nullify the instruction in the delay slot).

Although the Branch Likely instructions are included, software is strongly encouraged to avoid the use of the
Branch Likely instructions, as they will be removed from a future revision of the MIPS Architecture.

The MIPS64 architecture defines eight condition codes for use in compare and branch instructions. For backw
compatibility with previous revisions of the ISA, condition code bit 0 and condition code bits 1 through 7 are in
discontinuous fields in theFCSR.

Table 3-31 lists the conditional branch (branch and branch likely) FPU instructions;Table 3-32 lists the deprecated
conditional branch likely instructions.

Table 3-28 FPU Formatted Operand Move Instruction

Mnemonic Instruction

MOV.fmt Floating-Point Move

Table 3-29 FPU Conditional Move on True/False Instructions

Mnemonic Instruction

MOVF.fmt Floating-Point Move Conditional on FP False

MOVT.fmt Floating-Point Move Conditional on FP True

Table 3-30 FPU Conditional Move on Zero/Non-Zero Instructions

Mnemonic Instruction

MOVN.fmt Floating-Point Move Conditional on Nonzero

MOVZ.fmt Floating-Point Move Conditional on Zero

Table 3-31 FPU Conditional Branch Instructions

Mnemonic Instruction

BC1F Branch on FP False

BC1T Branch on FP True
50 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.7 Exceptions

register

ch field
ented

 field of

 can
truction

-point
ts

 occurs

Cause

EEE
e

3.6.6 Miscellaneous Instructions

The MIPS64 architecture defines various miscellaneous instructions that conditionally move one CPU general
to another, based on an FPU condition code.

Table 3-33 lists these conditional move instructions.

3.7 Exceptions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enables, and Flags fields of theFCSR.
The flag bits implement IEEE exception status flags, and the cause and enable bits control exception trapping. Ea
has a bit for each of the five IEEE exception conditions. The Cause field has an additional exception bit, Unimplem
Operation, used to trap for software emulation assistance. If an exception type is enabled through the Enables
theFCSR, then the FPU is operating in precise exception mode for this type of exception.

3.7.1 Precise Exception Mode

In precise exception mode, a trap occurs before the instruction that causes the trap or any following instruction
complete and write its results. If desired, the software trap handler can resume execution of the interrupted ins
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The cause bits are written during each floating
arithmetic operation to show any exception conditions that arise during the operation. A cause bit is set to 1 if i
corresponding exception condition arises; otherwise, it is cleared to 0.

A floating-point trap is generated any time both a cause bit and its corresponding enable bit are set. This case
either during the execution of a floating-point operation or when moving a value into theFCSR. There is no enable bit
for Unimplemented Operations; this exception always generates a trap.

In a trap handler, exception conditions that arise during any trapped floating-point operations are reported in the
field. Before returning from a floating-point interrupt or exception, or before setting cause bits with a move to theFCSR,
software first must clear the enabled cause bits by executing a move to theFCSRto prevent the trap from being
erroneously retaken.

If a floating-point operation sets only non-enabled cause bits, no trap occurs and the default result defined by I
Standard 754 is stored (seeTable 3-34). When a floating-point operation does not trap, the program can monitor th
exception conditions by reading the Cause field.

Table 3-32 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction

BC1FL Branch on FP False Likely

BC1TL Branch on FP True Likely

Table 3-33 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction

MOVN Move Conditional on FP False

MOVZ Move Conditional on FP True
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 51

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

s that
the bits
cleared

rmally
occur

rd 754
ption
e case
The Flags field is a cumulative report of IEEE exception conditions that arise as instructions complete; instruction
trap do not update the flag bits. The flag bits are set to 1 if the corresponding IEEE exception is raised, otherwise
are unchanged. There is no flag bit for the MIPS Unimplemented Operation exception. The flag bits are never
as a side effect of floating-point operations, but they can be set or cleared by moving a new value into theFCSR.

3.7.2 Exception Conditions

The subsections below describe the following five exception conditions defined by IEEE Standard 754:

• Section 3.7.2.1, "Invalid Operation Exception"

• Section 3.7.2.2, "Division By Zero Exception"

• Section 3.7.2.3, "Underflow Exception"

• Section 3.7.2.4, "Overflow Exception"

• Section 3.7.2.5, "Inexact Exception"

Section 3.7.2.6, "Unimplemented Operation Exception" also describes a MIPS-specific exception condition,
Unimplemented Operation Exception, that is used to signal a need for software emulation of an instruction. No
an IEEE arithmetic operation can cause only one exception condition; the only case in which two exceptions can
at the same time are Inexact With Overflow and Inexact With Underflow.

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a trap. IEEE Standa
specifies the result to be delivered in case no trap is taken. The FPU supplies these results whenever the exce
condition does not result in a trap. The default action taken depends on the type of exception condition and, in th
of the Overflow and Underflow, the current rounding mode.Table 3-34 summarizes the default results.

Table 3-34 Result for Exceptions Not Trapped

Bit Description Default Action

V Invalid Operation Supplies a quiet NaN.

Z Divide by zero Supplies a properly signed infinity.

U Underflow

Depends on the rounding mode as shown below:
0 (RN) and 1 (RZ): Supplies a zero with the sign of the exact result.
2 (RP): For positive underflow values, supplies 2E_min (MinNorm). For negative underflow
values, supplies a positive zero.
3 (RM): For positive underflow values, supplies a negative zero. For negative underflow
values, supplies a negative 2E_min (MinNorm).

Note that this behavior is only valid if theFCSR FN bit is cleared.

I Inexact
Supplies a rounded result. If caused by an overflow without the overflow trap enabled,
supplies the overflowed result. If caused by an underflow without the underflow trap enabled,
supplies the overflowed result.

O Overflow

Depends on the rounding mode, as shown below:
0 (RN): Supplies an infinity with the sign of the exact result.
1 (RZ): Supplies the format’s largest finite number with the sign of the exact result.
2 (RP): For positive overflow values, supplies positive infinity. For negative overflow values,
supplies the format’s most negative finite number.
3 (RM): For positive overflow values, supplies the format’s largest finite number. For
negative overflow values, supplies minus infinity.
52 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.7 Exceptions

finity

ro

The
ugh the

by

m what

e been

ed

 is

esult.
3.7.2.1 Invalid Operation Exception

An Invalid Operation exception is signaled when one or both of the operands are invalid for the operation to be
performed. When the exception condition occurs without a precise trap, the result is a quiet NaN.

The following operations are invalid:

• One or both operands are a signaling NaN (except for the non-arithmetic MOV.fmt, MOVT.fmt, MOVF.fmt,
MOVN.fmt, andMOVZ.fmt instructions).

• Addition or subtraction: magnitude subtraction of infinities, such as (+∞) + (-∞) or (-∞) - (-∞).

• Multiplication: 0× ∞, with any signs.

• Division: 0/0 or∞/∞, with any signs.

• Square root: An operand of less than 0 (-0 is a valid operand value).

• Conversion of a floating-point number to a fixed-point format when either an overflow or an operand value of in
or NaN precludes a faithful representation in that format.

• Some comparison operations in which one or both of the operands is a QNaN value.

3.7.2.2 Division By Zero Exception

The divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a finite nonze
number. When no precise trap occurs, the result is a correctly signed infinity. Divisions (0/0 and∞/0) do not cause the
Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of (∞/0) is a correctly signed
infinity.

3.7.2.3 Underflow Exception

Two related events contribute to underflow:

• Tininess: The creation of a tiny, nonzero result between±2E_min which, because it is tiny, might cause some other
exception later such as overflow on division. IEEE Standard 754 allows choices in detecting tininess events.
MIPS architecture specifies that tininess be detected after rounding, when a nonzero result computed as tho
exponent range were unbounded would lie strictly between±2E_min.

• Loss of accuracy: The extraordinary loss of accuracy occurs during the approximation of such tiny numbers
denormalized numbers. IEEE Standard 754 allows choices in detecting loss of accuracy events. The MIPS
architecture specifies that loss of accuracy be detected as inexact result, when the delivered result differs fro
would have been computed if both the exponent range and precision were unbounded.

The way that an underflow is signaled depends on whether or not underflow traps are enabled:

• When an underflow trap is not enabled, underflow is signaled only when both tininess and loss of accuracy hav
detected. The delivered result might be zero, denormalized, or 2E_min.

• When an underflow trap is enabled (through theFCSREnables field), underflow is signaled when tininess is detect
regardless of loss of accuracy.

3.7.2.4 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating-point result (if the exponent range
unbounded) is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate r
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 53

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

rt. This

ture.
erform

tion is

rs and

ns in
asic

ncy.
ge to
stage.
3.7.2.5 Inexact Exception

An Inexact exception is signaled when one of the following occurs:

• The rounded result of an operation is not exact.

• The rounded result of an operation overflows without an overflow trap.

• When a denormal operand is flushed to zero.

3.7.2.6 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS-defined exception that provides software emulation suppo
exception is not IEEE-compliant.

The MIPS architecture is designed so that a combination of hardware and software can implement the architec
Operations not fully supported in hardware cause an Unimplemented Operation exception, allowing software to p
the operation.

There is no enable bit for this condition; it always causes a trap. After the appropriate emulation or other opera
done in a software exception handler, the original instruction stream can be continued.

An Unimplemented Operation exception is taken in the following situations:

• when denormalized operands or tiny results are encountered for instructions not supporting denormal numbe
where such are not handed by the FS/FO/FN bits

• when a CVT instruction is applied with numbers out of the supported range.

3.8 Pipeline and Performance

This section describes the structure and operation of the FPU pipeline.

3.8.1 Pipeline Overview

The FPU has a seven stage pipeline to which the integer pipeline dispatches instructions. The FPU pipeline ru
parallel with the 5K integer pipeline. The FPU pipe is optimized for single-precision instructions, such that the b
multiply, ADD/SUB, and MADD/MSUB instructions can be performed with single-cycle throughput and low late
Executing double-precision multiply and MADD/MSUB instructions requires a second pass through the M1 sta
generate all 64 bits of the product. Executing long latency instructions, such as DIV and RSQRT, extends the M1
Figure 3-18 shows the FPU pipeline.
54 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.8 Pipeline and Performance

ided
Figure 3-18 FPU Pipeline

3.8.1.1 FR Stage - Decode, Register Read, and Unpack

The FR stage has the following functionality:

• The dispatched instruction is decoded for register accesses.

• Data is read from the register file.

• The operands are unpacked into an internal format.

3.8.1.2 M1 Stage - Multiply Tree

The M1 stage has the following functionality:

• A single-cycle multiply array is provided for single-precision data format multiplication, and two cycles are prov
for double-precision data format multiplication.

• The long instructions, such as divide and square root, iterate for several cycles in this stage.

• Sum of exponents is calculated.

3.8.1.3 M2 Stage - Multiply Complete

The M2 stage has the following functionality:

• Multiplication is complete when the carry-save encoded product is compressed into binary.

• Rounding is performed.

• Exponent difference for addition path is calculated.

3.8.1.4 A1 Stage - Addition First Step

This stage performs the first step of the addition.

3.8.1.5 A2 Stage - Addition Second and Final Step

This stage performs the second and final step of the addition.

5K integer pipeline

FPU instruction in general

FPU double multiplication (for example, MUL, MADD)

FPU long instructions (for example, DIV, RSQRT)

I D R E M W

Dispatch

FR M1 M2 A1 A2 FP

FR M1 M1 M2 A1 A2

FW

FWFP

FR M1 M1 M2 A1 A2 FWFP

Second
Pass

Multiple cycles
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 55

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit

e pipe.
3.8.1.6 FP Stage - Result Pack

The FP stage has the following functionality:

• The result coming from the datapath is packed into IEEE 754 Standard format for the FPR register file.

• Overflow and underflow exceptional conditions are resolved.

3.8.1.7 FW Stage - Register Write

The result is written to the FPR register file.

3.8.2 Bypassing

The FPU pipeline implements extensive bypassing, as shown inFigure 3-19. Results do not need to be written into the
register file and read back before they can be used, but can be forwarded directly to an instruction already in th
Some bypassing is disabled when operating in MIPS32 register file mode, the FP bit in the CP0Statusregister is 0, due
to the paired even-odd 32-bit registers that provide 64-bit registers.

Figure 3-19 Arithmetic Pipeline Bypass Paths

3.8.3 Repeat Rate and Latency

Table 3-35 shows the repeat rate and latency for the FPU instructions.

Table 3-35 5Kf Core FPU Latency and Repeat Rate

Opcodea Latency
(cycles)

Repeat Rate
(cycles)

ABS.[S,D], NEG.[S,D], ADD.[S,D], SUB.[S,D], MUL.S, MADD.S, MSUB.S, NMADD.S,
NMSUB.S 4 1

MUL.D, MADD.D, MSUB.D, NMADD.D, NMSUB.D 5 2

RECIP.S 13 10

RECIP.D 25 21

RSQRT.S 17 14

RSQRT.D 35 31

DIV.S, SQRT.S 17 14

DIV.D, SQRT.D 32 29

C.cond.[S,D] to MOVF.fmt and MOVT.fmt instruction / MOVT, MOVN, BC1 instruction 1 / 2 1

CVT.D.S, CVT.[S,D].[W,L] 4 1

FR M1 M2 A1 A2 FP FW

A2 to M1 bypass

FP to M1 bypass

FW to M1 bypass
56 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

3.8 Pipeline and Performance
CVT.S.D 6 1

CVT.[W,L].[S,D],
CEIL.[W,L].[S,D], FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D], TRUNC.[W,L].[S,D] 5 1

MOV.[S,D], MOVF.[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[S,D] 4 1

LWC1, LDC1, LDXC1, LUXC1, LWXC1 3 1

MTC1, DMTC1, MFC1, DMFC1 2 1

a. Format: S = Single, D = Double, W = Word, L = Longword.

Table 3-35 5Kf Core FPU Latency and Repeat Rate (Continued)

Opcodea Latency
(cycles)

Repeat Rate
(cycles)
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 57

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 3 Floating-Point Unit
58 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

d

cialized
d
nd
 MMU is

pping
ode;

ddresses
g). The

ress
ntains
).
Chapter 4

Memory Management

This chapter describes the 5K Memory Management Unit, including the Translation Lookaside Buffer and Fixe
Mapping Translation option. It contains the following sections:

• Section 4.1, "Introduction"

• Section 4.2, "TLB Organization"

• Section 4.3, "Address Translation"

• Section 4.4, "TLB Implementation Details"

• Section 4.5, "TLB Management Instructions"

• Section 4.6, "TLB Exceptions"

• Section 4.7, "TLB Memory Maps"

• Section 4.8, "FMT Memory Maps"

4.1 Introduction

The 5K microprocessor core assigns address translation and related virtual-memory support functions to a spe
processor called the Memory Management Unit (MMU). The MMU is incorporated in the CPU and is positione
between the CPU’s integer unit and main memory. The MMU receives virtual addresses from the integer unit a
converts them to physical addresses for accessing the main memory or a cache system, if one is present. The
also responsible for handling the control of cacheability and such exceptional conditions as memory protection
violations.

The 5K core MMU can be implemented using either a translation lookaside buffer (TLB) or a simpler Fixed Ma
Translation (FMT) scheme. Using an FMT instead of the TLB function is supported only for the 32-bit addressing m
a TLB supports both the 32- and 64-bit addressing modes. The FMT translates virtual addresses to physical a
using a fixed-offset mechanism that depends on the current operating mode (User, Kernel, Supervisor, or Debu
FMT option is described in the final section of this chapter,Section 4.8, "FMT Memory Maps"; the intervening
discussion describes implementations using a TLB.

4.2 TLB Organization

The TLB is a fully-associative cache of virtual/physical address pairs that are used in the virtual-to-physical add
translation. The 5K core supports implementations with a TLB containing 16, 32, or 48 dual entries. Each entry co
two logical components: a Tag comparison section (Tag/CAM1 part) and a physical translation section (Data/RAM part
Figure 4-1 shows the logical arrangement of a TLB entry.

1 CAM = Contents Addressable Memory
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 59

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 4 Memory Management

ivided

(PFN),

ven and
 by the

exactly

 a
VPN2
t of

ask

dress
. The

ed

ress this
ring
Figure 4-1 TLB Entry Format

The comparison section includes the mapping region specifier (R), the entry’s Virtual Page Number VPN2 (VPN d
by 2), the ASID, the G(lobal) bit, and a PageMask field which allows different page sizes for all entries.

The physical translation section contains a pair of entries, each of which contains the physical page frame number
a valid (V) bit, a dirty (D) bit, and a cache coherency field (C).

Each VPN2 maps two consecutive VPNs to two independently specified physical pages, corresponding to the e
odd pages of the pair (PFN0 and PFN1). During translation, which of the two PFN entries is read is determined
virtual address bit immediately to the right of the section masked with the PageMask entry (seeTable 4-1in Section 4.3,
"Address Translation").

For purposes of managing TLB entries by both hardware and software, the fields of the TLB entry correspond
to the fields in the CP0PageMask, EntryHi, EntryLo0,andEntryLo1registers. TheASIDandVPN2are contained in the
EntryHi register, the even page entries are contained inEntryLo0,and the odd page entries are inEntryLo1. These
registers are described in detail inChapter 6, “Coprocessor 0 Registers.”

4.2.1 PageMask Field

The 5K supports page sizes from 4Kbytes to 16 Mbytes, in multiples of 4Kbytes. The PageMask field contains
comparison mask that determines the page size for each TLB entry—only the unmasked bits of the corresponding
are used in the TLB comparison. Variable-size pages assist the operating system in controlling both the amoun
mapped space and the replacement characteristics of various memory regions, including the ability to provide
special-purpose maps. The CP0PageMaskregister is loaded with the page size, which is then entered into the PageM
field when a new TLB entry is written.

4.2.2 ASID, GLOBAL, and R Bits

The 8-bit Address Space Identifier (ASID) is used by the operating system to uniquely identify the same virtual ad
across different processes, and thus is useful in reducing the frequency of TLB flushing during a context switch
operating system assigns ASIDs to each process, and stores the ASID in the CP0EntryHi register. During address
translation, the ASID in theEntryHi register is compared with the ASID in the TLB entry. The Region (R) bits are us
to select between the various address regions.

In certain cases, the operating system may wish to associate the same virtual address with all processes. To add
need, the TLB includes a Global (G) bit which, when set to one, overrides the result of the ASID comparison du
translation.

PFN1 C1 D1 V1

PFN0 C0 V0

G ASIDVPN2

PageMask

R

D0 } Data

Tag
60 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

4.3 Address Translation

et to

m.

ility and

 with the
e entry,
4.2.3 Dirty Bit

The Dirty bit is used as a write-protect bit for a page. If this bit is set to one, the page can be written; if this bit is s
zero, any attempt to write to the page causes a TLB Modified exception (seeSection 4.6, "TLB Exceptions").

This feature allows memory protection on a per-page basis, and is also used for paging by the operating syste

4.2.4 Cache/Coherency Attributes

Each page has a set of cache attributes associated with it. These attributes include information about cacheab
cache write policy. The following five configurations are permitted:

• Cacheable, Write-through, No Write-allocate

• Cacheable, Write-through, Write-allocate

• Uncached (Write-around)

• Cacheable, Write-back, Write-allocate

• Uncached accelerated (Write-around)

Cache coherency is not supported by the 5K core. All pages are non-coherent.

Cache attributes are explained inChapter 8, “Cache Organization and Operation.”

4.3 Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processor
virtual addresses in the TLB. There is a match when the VPN of the address is the same as the VPN2 field of th
and either:

• The Global (G) bit of both the even and odd pages of the TLB entry is set, or

• The ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, we have a TLBmiss and a refill exception is taken by the
processor, and software can refill the TLB from a page table of virtual/physical addresses in memory.

Figure 4-2 shows a simplified view of virtual-to-physical address translation using the TLB.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 61

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 4 Memory Management

ith the

6-bit

the

set).
Figure 4-2 Overview of Virtual-to-Physical Address Translation

If there is a virtual address match in the TLB, the physical address is output from the TLB and concatenated w
Offset, which represents an address within the page. The Offset does not pass through the TLB.

Figure 4-3 shows a more detailed view of address translation. The 5K core uses a 42-bit virtual address and a 3
physical address. The 42-bit virtual address is contained in VA[63:62] and VA[39:0].

The top portion ofFigure 4-3shows a virtual address for a 4-Kbyte page size. The width of the Offset is defined by
page size; the remaining 30 bits of the address represent the VPN used to index the 1Gbyte-entry page table.

The bottom portion ofFigure 4-3 shows the virtual address for a 16-Mbyte page size (represented by a 24-bit Off
The remaining 18 bits of the address represent the VPN, and index the 256Kbyte-entry page table.

1. Virtual address (VA) represented by the
virtual page number (VPN) is compared
with tag in TLB.

Virtual address

2. If there is a match, the page frame
number (PFN0 or PFN1) representing
the upper bits of the physical address
(PA) is output from the TLB.

VPN

PFN0

TLB

Physical address

PFN

Offset

Offset
3. The Offset, which does not pass through

the TLB, is then concatenated with the
PFN.

Entry

ASIDG

VPN2ASIDG

PFN1

C0 D0 V0

C1 D1 V1
62 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

4.4 TLB Implementation Details

g the
e even
he

), a
eed
ch
Figure 4-3 64-bit Virtual Address Translation

Table 4-1 shows the generation of the physical address as a function of the page size of the TLB entry matchin
virtual address. The “Even/Odd Select” column indicates which virtual address bit is used to select between th
(EntryLo0) or odd (EntryLo1) entry in the matching TLB entry. The “PA Generated From” column specifies how t
physical address is generated from the selected PFN and the Offset in the virtual address (the symbol|| denotes
“concatenation”). The PFN has the bit range PFN23..0, corresponding to PA35..12.

4.4 TLB Implementation Details

When configured with the TLB option, the 5K core MMU has in fact three TLBs: an instruction micro TLB (ITLB
data micro TLB (DTLB), and a large joint TLB (JTLB). The purpose of the micro TLBs (uTLBs) is to increase the sp
of translation and to allow two address translations to be performed simultaneously— one for an instruction fet
address (via the ITLB) and one for a data load/store address (via the DTLB).

Table 4-1 Physical Address Generation

Page Size Even/Odd
Select

PA Generated From

4K Bytes VA12 PFN23..0 || VA11..0

16K Bytes VA14 PFN23..2 || VA13..0

64K Bytes VA16 PFN23..4 ||VA15..0

256K Bytes VA18 PFN23..6 || VA17..0

1M Bytes VA20 PFN23..8 || VA19..0

4M Bytes VA22 PFN23..10 || VA21..0

16M Bytes VA24 PFN23..12 || VA23..0

11 0

 28 12

63

VPN Offset

6471

ASID

 8

Virtual address with 256M (228) 4-Kbyte pages

23 0

 16 24

Offset

71

Virtual Address with 64K (216)16-Mbyte pages

16 bits = 64K pages

28 bits = 256M pages 12

ASID

 8

6364

VPN

24

Virtual-to-physical
translation in TLB

Bits [63:62] of the virtual
address select User and
Kernel address spaces.

Offset passed unchanged
to physical memory.

Virtual-to-physical
translation in TLB

 TLB

 TLB

 35 0
PFN0/1 Offset

Offset passed unchanged
to physical memory.

36-bit Physical Address

62 61 40 39

 24

396162

 24
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 63

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 4 Memory Management

 JTLB.
B is
f
accessed
 fetch

we
stalls

y
LB, and

hich
idated)

rite
at the

scribed

entry
dent in
rmal

e is to
atch

ble
The DTLB provides translations for data load/store instructions and operates as a fully-associative cache of the
Each data load/store instruction accesses the DTLB first. If a translation is not found in the DTLB, then the JTL
accessed. Once the translation is retrieved, it is written back to the DTLB. Thus, the DTLB contains a subset o
translations that are most-recently used. The same process occurs for instruction fetch addresses—the JTLB is
only when the instruction translation is not in the ITLB. A data load/store access has priority over an instruction
access when accessing the JTLB, because the load/store address belongs to an earlier instruction.

A ITLB/DTLB miss sequence (uTLB miss, JTLB lookup, uTLB update) has a penalty of two extra clock cycles. If
have simultaneous ITLB miss and DTLB miss, the DTLB gets first priority when accessing the JTLB, and I-access
an additional cycle, giving a total of 3 latency cycles.

The DTLB and ITLB each have four entries and map 4Kbyte pages only. Unlike the JTLB, they are managed b
hardware and not accessible via software. Hardware guarantees that the micro TLBs are proper subsets of the JT
that every translation in the uTLBs also exists in the JTLB.

uTLB refills use the least-recently-used (LRU) algorithm, in which the uTLB always replaces (refills) the entry w
has not been accessed for the longest amount of time. Also, when one of the entries in the uTLB is flushed (inval
due to a JTLB write instruction, that entry becomes the LRU entry.

The mechanism used by hardware for implementing a partial flush of the uTLB ensures that whenever a TLB w
instruction is executed, only the uTLB entries with matching index are invalidated. This effectively guarantees th
contents of the uTLB are always a valid subset of the JTLB.

4.5 TLB Management Instructions

The TLB management instructions are used to read, write, and probe entries in the TLB. These instructions are de
in the following subsections.

4.5.1 TLBWI - TLB Write Indexed

A TLBWI instruction is used to refill a TLB entry, using an index contained in the CP0Indexregister. Data in the CP0
EntryHiandPageMaskregisters is written into the TLB Tag entry, and data from CP0EntryLo0/1is written into the TLB
Data entry.

The TLBWI instruction executes in four cycles. In the first cycle, a write comparison is performed, in which the
to be written is checked against existing TLB entries to determine whether the new virtual address is already resi
the TLB (at a different entry than the one to be written). The functionality of this write comparison differs from a no
compare in the following ways:

• A hardware reset bit (I) is implemented in the Tag entry to prevent power-up tag values from causing false
write-compare matches.

• The incoming PageMask value must qualify the per-entry address comparison. (For example, if a 16Mbyte pag
be written and a 4Kbyte page within the 16Mbyte page is already in the TLB, then the write comparison must m
for this case.)

• The incoming Global bit must be ORed with the per-entry Global bit, since an incoming entry with global ena
must compare to an existing entry with global disable.

• The entry to be written is excluded from the compare, since overwrites of the same entry are permitted.

If the write comparison results in a match, the TLB Shutdown (TS) bit is set in the CP0Status register, and a Machine
Check exception is taken (refer toSection 4.6, "TLB Exceptions"). In this case, the TLB write is not performed and the
entry remains unchanged.
64 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

4.6 TLB Exceptions

case
sident
,
ring the

I

s

 CP0
robe
Note that it is possible for multiple entries to match in the TLB during the write compare. For example, consider the
where 4Kbyte pages are resident in the TLB, and a write is attempted with a 16Mbyte page that includes all the re
4Kbyte pages. There will be a match on all of the 4Kbyte entriesexceptthe entry to be written, since it is excluded. Thus
depending on the implementation, the match-line selection of PFN0/1 wordlines may need to be suppressed du
write compare cycle, since more than one could result in a match.

The second cycle of the TLBWI is only present because of timing considerations. In the third cycle of the TLBW
instruction, the TLB Tag entry and thePFN0of the Data entry are written. In the fourth and final cycle, thePFN1of the
TLB Data entry is written.

4.5.2 TLBWR - TLB Write Random

The TLBWR instruction is similar to the TLBWI instruction except that the index used to access the TLB entry i
contained in the CP0Randomregister instead of the CP0Indexregister. The index for the TLBWR is pseudo-randomly
generated.

4.5.3 TLBP - TLB Probe

The TLB probe instruction is used to check for a specific VPN in the TLB. It performs a compare of VPN in the
EntryHi register against all Tags in the TLB CAM. If there is a match, the index of the matching entry and the p
hit/miss indicator is written to the CP0Index register. If there is no match, the value of the CP0Index register is
unpredictable, but the probe hit/miss indicator is still written to the CP0Index register. Thus the CP0Index register is
always updated on a TLB Probe Operation, whereas the CP0EntryHi andEntryLo registers are unchanged.

A TLBP instruction executes in one CPU clock cycle.

4.5.4 TLBR - TLB Read Indexed

The TLBR instruction is used to read a specific entry in the TLB pointed to by the CP0Index register. Data from the
indexed TLB Tag part (VPN and PageMask) is stored in the CP0EntryHi andPageMask registers, and data from the
indexed TLB Data part is stored in the CP0EntryLo0/1 registers.

A TLBR instruction executes in two CPU clock cycles.

4.6 TLB Exceptions

TLB exception conditions are listed and briefly described inTable 4-2. Exceptions are listed in the order of their relative
priority, from high to low. A more detailed description of TLB exceptions is provided inChapter 5, “Exception
Processing.”

Table 4-2 TLB Exceptions

Exception Description

TLB Refill - Instruction fetch TLB miss occurred on an instruction fetch.

TLB Invalid - Instruction fetch The valid bit was zero in the TLB entry matching the address
referenced by an instruction fetch.

TLB Refill - Data access TLB miss occurred on a data access.

TLB Invalid - Data access The valid bit was zero in the TLB entry matching the address
referenced by a load or store instruction.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 65

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 4 Memory Management

ped

ed entry

B entry

lt in
4.6.1 TLB Refill Exception

A TLB Refill or XTLB (extended TLB) Refill exception occurs when no TLB entry matches a reference to a map
address space, and theEXL bit in the CP0Status register is zero. Refer toSection 5.7, "TLB and XTLB Refill
Exceptions" on page 87.

The occurrence of the TLB Refill exception during address translation is shown inFigure 4-4.

4.6.2 TLB Invalid Exception

A TLB invalid exception occurs when a TLB entry matches a reference to a mapped address space, but the match
has the Valid bit set to zero. Refer toSection 5.8, "TLB Invalid Exception" on page 88.

The occurrence of the TLB Invalid exception during address translation is shown inFigure 4-4.

4.6.3 TLB Modified Exception

A TLB Modified exception occurs when a store instruction references a mapped address, and the matching TL
is write-protected (that is, the entry’s Dirty bit is zero, indicating that the entry cannot be modified). Refer toSection 5.9,
"TLB Modified Exception" on page 89.

The occurrence of the TLB Modified exception during address translation is shown inFigure 4-4 below.

4.6.4 Machine Check (TLB Shutdown)

A Machine Check exception occurs when there is an attempt to execute a TLB write instruction that would resu
multiple matching entries in the TLB.

The Machine Check exception is not shown inFigure 4-4, since it does not occur during the translation process.

TLB Modified - Data access The dirty bit was zero in the TLB entry matching the address
referenced by a store instruction.

Table 4-2 TLB Exceptions

Exception Description
66 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

4.7 TLB Memory Maps

ides
ess. To
,
on of bit
dress.

g
w into
ing to the

nd
Figure 4-4 TLB Address Translation and Exception Conditions

4.7 TLB Memory Maps

With support for 64-bit operations and address calculation, the MIPS64 architecture implicitly defines and prov
support for a 64-bit virtual address space, subdivided into four segments selected by bits 63:62 of the virtual addr
provide compatibility for 32-bit programs and MIPS32 processors, a 232-byte Compatibility address space is defined
separated into two non-contiguous ranges in which the upper 32 bits of the 64-bit address are the sign extensi
31. The Compatibility address space is similarly sub-divided into segments selected by bits 31:29 of the virtual ad

Each segment of an address space is classified asmappedor unmapped. A mapped address is one that is translated usin
the TLB or other translation unit. An unmapped address is one which is not translated and which provides a windo
the lowest portion of the physical address space, starting at physical address zero, and with a size correspond
size of the unmapped segment.

Additionally, the kseg1 segment is classified asuncached. References to this segment bypass the cache hierarchy a
allow direct access to memory.

VPN
Match?

ASID
Match?

Valid

No

Yes

Yes

Yes

No

No

Yes

Write?
Yes

No
Yes

TLB
Invalid

TLB
Modified

Exception

TLB
Refill

Exception

VPN
and

ASID

Virtual Address (Input)

Access

Physical Address (Output)

Memory

Valid

Dirty

Global

No

No

Exception

NoAddress
Error

Yes

Address?

Exception

G=1?

V=1?

D=1?
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 67

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 4 Memory Management

ents in
Figure 4-5shows the basic layout of the address spaces, including the Compatibility address space and the segm
each address space.Table 4-3 describes the address spaces in greater detail.

Figure 4-5 Virtual Address Spaces

Kernel
Mapped

User
Mapped

Supervisor
Mapped

Kernel
Unmapped
Uncached

Kernel
Unmapped

Supervisor
Mapped

0x0000 0000 0000 0000

User
Mapped

Kernel
Mapped

0x4000 0000 0000 0000

0x8000 0000 0000 0000

0xFFFF FFFF FFFF FFFF

64-bit Virtual Memory Address Space 32-bit Compatibility Address Space

0xFFFF FFFF FFFF FFFF

0xFFFF FFFF E000 00000

0xFFFF FFFF C000 0000

0xFFFF FFFF A000 0000

0xFFFF FFFF 8000 0000

0x0000 0000 7FFF FFFF

0x0000 0000 0000 0000

Kernel
Unmapped

0xC000 0000 0000 0000

2 31
-byte C

om
patibility S

egm
ent

2
31

-b
yt

e
C

om
pa

tib
ili

ty
 S

eg
m

en
t

xkseg

xkphys

xsseg

xuseg

useg

kseg0

kseg1

sseg

kseg3
68 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

4.7 TLB Memory Maps

d with a
le, a
ment is
t—for
e, and

example,
rence to

.

The 5K core implements all four operating modes: User, Kernel, Supervisor, and Debug Modes.

Each segment of an address space is associated with one of the operating modes. A segment that is associate
particular mode is accessible if the processor is running in that mode or in a more privileged mode—for examp
segment associated with User Mode is accessible when the processor is running in User or Kernel Modes. A seg
not accessible if the processor is running in a less privileged mode than the mode associated with the segmen
example, a segment associated with Kernel Mode is not accessible when the processor is running in User Mod
such a reference results in an Address Error exception. The “Reference Legal from Mode(s)” column inTable 4-3lists
the modes from which each segment may be legally referenced.

If a segment has more than one name, each name denotes the mode from which the segment is referenced. For
the segment name “useg” denotes a reference from User Mode, while the segment name “kuseg” denotes a refe
the same segment from Kernel Mode.

References to 64-bit segments (as shown in the “Segment Type” column ofTable 4-3) are enabled only if the appropriate
64-bit Address Enable bit (PX, UX, orKX) is set. References to 32-bit Compatibility segments are always enabled

Table 4-3 Virtual Address Spaces

VA63..62 Segment
Name(s)

Address Range 64-bit
Enable

Associated
with Mode

Reference
Legal
From

Mode(s)

 Segment
Size

Segment
Type

112

kseg3
0xFFFF FFFF FFFF FFFF

through
0xFFFF FFFF E000 0000

Always Kernel Kernel 229 bytes 32-bit
Compatibility

sseg,
ksseg

0xFFFF FFFF DFFF FFFF
through

0xFFFF FFFF C000 0000
Always Supervisor Supervisor,

Kernel 229 bytes 32-bit
Compatibility

kseg1
0xFFFF FFFF BFFF FFFF

through
0xFFFF FFFF A000 0000

Always Kernel Kernel 229 bytes 32-bit
Compatibility

kseg0
0xFFFF FFFF 9FFF FFFF

through
0xFFFF FFFF 8000 0000

Always Kernel Kernel 229 bytes 32-bit
Compatibility

xkseg
0xFFFF FFFF 7FFF FFFF

through
0xC000 0000 0000 0000

KX Kernel Kernel (240 - 231)
bytes 64-bit

102 xkphys
0xBFFF FFFF FFFF FFFF

through
0x8000 0000 0000 0000

KX Kernel Kernel

8 236-byte
regions

within the262

byte segment

64-bit

012 xksseg
0x7FFF FFFF FFFF FFFF

through
0x4000 0000 0000 0000

SX Supervisor Supervisor,
Kernel 240 bytes 64-bit

002

xuseg
xkuseg

0x3FFF FFFF FFFF FFFF
through

0x0000 0000 8000 0000
UX User

User
Supervisor

Kernel
240 bytes 64-bit

useg
kuseg

0x0000 0000 7FFF FFFF
through

0x0000 0000 0000 0000
Always User

User
Supervisor

Kernel
231 bytes 32-bit

Compatibility
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 69

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 4 Memory Management

 of the
.

4.7.1 Access Control as a Function of Address and Operating Mode

Table 4-4 describes the action taken by the processor for each section of the 64-bit address space as a function
operating mode of the processor, including the selection of a TLB Refill vector and other special-case behavior

Table 4-4 Address Space Access and TLB Refill Selection as a Function of Operating Mode

Virtual Address Range Segment
Name(s)

Action when Referenced from Operating Modes

SEGBITS = 40,
PABITS = 36

User Mode Supervisor
Mode

Kernel Mode

0xFFFF FFFF FFFF FFFF

through

0xFFFF FFFF E000 0000

kseg3 Address Error Address Error

Mapped

Refill Vector:
TLB (KX=0)
XTLB(KX=1)

SeeSection 4.7.5,
"Address

Translation in
Debug Mode" on

page 75for special
behavior when
DebugDM = 1

0xFFFF FFFF DFFF FFFF

through

0xFFFF FFFF C000 0000

sseg,
ksseg Address Error

Mapped

Refill Vector:
TLB (KX=0)
XTLB(KX=1)

Mapped

Refill Vector:
TLB (KX=0)
XTLB(KX=1)

0xFFFF FFFF BFFF FFFF

through

0xFFFF FFFF A000 0000

kseg1 Address Error Address Error

Unmapped,
Uncached

SeeSection 4.7.2,
"Address

Translation and
Cache Coherency

Attributes for
kseg0 and kseg1"

on page 72

0xFFFF FFFF 9FFF FFFF

through

0xFFFF FFFF 8000 0000

kseg0 Address Error Address Error

Unmapped

SeeSection 4.7.2,
"Address

Translation and
Cache Coherency

Attributes for
kseg0 and kseg1"

on page 72

0xFFFF FFFF 7FFF FFFF

through

0xC000 00FF 8000 0000

Address Error Address Error Address Error

0xC000 00FF 7FFF FFFF

through

0xC000 0000 0000 0000

xkseg Address Error Address Error

Address Error if
KX = 0

Mapped if
KX = 1

 Refill Vector:
XTLB
70 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

4.7 TLB Memory Maps
0xBFFF FFFF FFFF FFFF

through

0x8000 0000 0000 0000

xkphys Address Error Address Error

Address Error if
KX = 0 or in

certain address
ranges within the

segment

 Unmapped

SeeSection 4.7.3,
"Address

Translation and
Cache Coherency

Attributes for
xkphys" on page

72

0x7FFF FFFF FFFF FFFF

through

0x4000 0100 0000 0000

Address Error Address Error Address Error

0x4000 00FF FFFF FFFF

through

0x4000 0000 0000 0000

xsseg
xksseg Address Error

Address Error if
SX = 0

Mapped if
SX = 1

 Refill Vector:
XTLB

Address Error if
SX = 0

Mapped if
SX = 1

 Refill Vector:
XTLB

0x3FFF FFFF FFFF FFFF

through

0x0000 0100 0000 0000

Address Error Address Error Address Error

0x0000 00FF FFFF FFFF

through

0x0000 0000 8000 0000

xuseg
xsuseg
xkuseg

Address Error if
UX = 0

Mapped if
UX = 1

 Refill Vector:
XTLB

Address Error if
UX = 0

Mapped if
UX = 1

 Refill Vector:
XTLB

Address Error if
UX = 0

Mapped if
UX = 1

 Refill Vector:
XTLB

SeeSection 4.7.4,
"Address

Translation for
kuseg when

StatusERL = 1" on
page 74 for

implementation-
dependent

behavior when
StatusERL=1

Table 4-4 Address Space Access and TLB Refill Selection as a Function of Operating Mode (Continued)

Virtual Address Range Segment
Name(s)

Action when Referenced from Operating Modes

SEGBITS = 40,
PABITS = 36

User Mode Supervisor
Mode

Kernel Mode
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 71

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 4 Memory Management

eg0 is
ched.
egment.

e entire
4.7.2 Address Translation and Cache Coherency Attributes for kseg0 and kseg1

The kseg0 and kseg1 unmapped segments provide a window into the least-significant 229bytes of physical memory, and,
as such, are not translated using the TLB or other address translation unit. The cache coherency attribute of ks
supplied by theK0 field of theConfigregister. The cache coherency attribute for the kseg1 segment is always unca
Table 4-5describes how this transformation is done, and the source of the cache coherency attributes for each s

4.7.3 Address Translation and Cache Coherency Attributes for xkphys

The xkphys is an unmapped segment composed of 8 address ranges, each of which provides a window into th
2PABITS bytes of physical memory. For this segment, the cache coherency attribute is specified in VA61..59 and has the
same encoding as that shown inTable 6-6 on page 107. An Address Error exception occurs if VA58..PABITSare non-zero.
If no Address Error exception occurs, the physical address is taken from VAPABITS-1..0. Figure 4-6 shows the
interpretation of the various fields of the virtual address when referencing the xkphys segment.

Figure 4-6 Address Interpretation for xkphys Segment

0x0000 0000 7FFF FFFF

through

0x0000 0000 0000 0000

useg
suseg
kuseg

Mapped

Refill Vector:
TLB (UX=0)
XTLB(UX=1)

Mapped

Refill Vector:
TLB (UX=0)
XTLB(UX=1)

Unmapped if
StatusERL=1

SeeSection 4.7.4,
"Address

Translation for
kuseg when

StatusERL = 1" on
page 74

Mapped if
StatusERL=0

 Refill Vector:
TLB (UX=0)
XTLB(UX=1)

Table 4-5 Address Translation and Cache Attributes for kseg0 and kseg1

Segment
Name

Virtual Address Range Generates Physical Address Cache Attribute

kseg1

0xFFFF FFFF BFFF FFFF

through

0xFFFF FFFF A000 0000

0x0000 0000 1FFF FFFF

through

0x0000 0000 0000 0000

Uncached

kseg0

0xFFFF FFFF 9FFF FFFF

through

0xFFFF FFFF 8000 0000

0x0000 0000 1FFF FFFF

through

0x0000 0000 0000 0000

From K0 field of
Config Register

Table 4-4 Address Space Access and TLB Refill Selection as a Function of Operating Mode (Continued)

Virtual Address Range Segment
Name(s)

Action when Referenced from Operating Modes

SEGBITS = 40,
PABITS = 36

User Mode Supervisor
Mode

Kernel Mode

Physical Address

63 0

10

62 61 59

CCA Address Error if Non-Zero

58 PABITS PABITS - 1
72 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

4.7 TLB Memory Maps
Table 4-6 Address Translation and Cache Attributes for xkphys

Virtual Address Range Generates Physical
Address

Cache Attribute

Assuming
PABITS = 36

0xBFFF FFFF FFFF FFFF

through

0xB800 0010 0000 0000

Address Error N/A

0xB800 000F FFFF FFFF

through

0xB800 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uses encoding 7 of
Table 6-6 on page

107

0xB7FF FFFF FFFF FFFF

through

0xB000 0010 0000 0000

Address Error N/A

0xB000 000F FFFF FFFF

through

0xB000 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uses encoding 6 of
Table 6-6 on page

107

0xAFFF FFFF FFFF FFFF

through

0xA800 0010 0000 0000

Address Error N/A

0xA800 000F FFFF FFFF

through

0xA800 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uses encoding 5 of
Table 6-6 on page

107

0xA7FF FFFF FFFF FFFF

through

0xA000 0010 0000 0000

Address Error N/A

0xA000 000F FFFF FFFF

through

0xA000 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uses encoding 4 of
Table 6-6 on page

107

0x9FFF FFFF FFFF FFFF

through

0x9800 0010 0000 0000

Address Error N/A
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 73

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 4 Memory Management

imilar to
sing
4.7.4 Address Translation for kuseg when StatusERL = 1

To provide support for the cache error exception handler, kuseg becomes an unmapped, uncached segment, s
kseg1, when theStatus register’sERL bit is set. This allows the cache error exception code to operate uncached u
GPR R0 as a base register in order to save other GPRs before they are used by the exception handler.

The 5K core transforms all the lower 236bytes of kuseg.

0x9800 000F FFFF FFFF

through

0x9800 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Cacheable (see
encoding 3 ofTable

6-6 on page 107

0x97FF FFFF FFFF FFFF

through

0x9000 0010 0000 0000

Address Error N/A

0x9000 000F FFFF FFFF

through

0x9000 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uncached (see
encoding 2 ofTable

6-6 on page 107

0x8FFF FFFF FFFF FFFF

through

0x8800 0010 0000 0000

Address Error N/A

0x8800 000F FFFF FFFF

through

0x8800 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uses encoding 1 of
Table 6-6 on page

107

0x87FF FFFF FFFF FFFF

through

0x8000 0010 0000 0000

Address Error N/A

0x8000 000F FFFF FFFF

through

0x8000 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uses encoding 0 of
Table 6-6 on page

107

Table 4-6 Address Translation and Cache Attributes for xkphys (Continued)

Virtual Address Range Generates Physical
Address

Cache Attribute

Assuming
PABITS = 36
74 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

4.8 FMT Memory Maps

F FF3F
d

bug Mode.

e current

s (VA)
efer
4.7.5 Address Translation in Debug Mode

In Debug Mode, the EJTAG block treats the virtual address range 0xFFFF FFFF FF20 0000 through 0xFFFF FFF
FFFF, inclusive, as a special memory-mapped region referred to as thedsegregion. The dseg address region is describe
in Table 4-7.

CPU access to the dseg address range is determined by the state of the Load Store Normal Memory (LSNM) bit in the
Debug register, as shown inTable 4-8.

In Debug Mode, accesses outside the dseg address range are handled in the same way as accesses in non-De

Refer toChapter 10, “EJTAG Debug Features,” for a detailed description of Debug Mode.

4.8 FMT Memory Maps

Use of a FMT for the TLB function is only supported for the 32-bit addressing mode (theStatus register’sKX, SX and
UX bits are set to zero). When the 5K core is configured with the FMT option,StatusKX, SX and UX and the MMU Size
field in theConfig1 register are hardwired to 0, and theMT field in theConfig Register is set to the value 3.

The FMT translates virtual addresses to physical addresses using a fixed-offset mechanism that depends on th
operating mode (User or Kernel) and the value of the Error Level bit (ERL) in the CP0Status register.

When using an FMT, cacheability of addresses is controlled by theK0, KU, andK23 fields in the CP0Config register.
Refer to the description of theConfig register inChapter 6, “Coprocessor 0 Registers.” Note that there is no address
protection mechanism in the FMT implementation.

4.8.1 User Mode (useg/suseg/kuseg)

In User Mode, the physical address (PA) is determined by adding a fixed offset (0x4000 0000) to the virtual addres
whenERLequals zero. Thus VA=(0x0000 0000 to 0x7FFF FFFF) maps to PA=(0x4000 0000 to 0xBFFF FFFF). R
to Figure 4-7.

Table 4-7 Physical Address and Cache Attribute for dseg

Segment
Name

Virtual Address Generates Physical Address Cache
Attribute

dseg

0xFFFF.FFFF.FF20.0000

through

0xFFFF.FFFF.FF3F.FFFF

References are NOT mapped through the TLB.
The physical address is obtained by stripping a number of the
MSBs from the virtual address. Transactions to dseg do not

occur on the external system memory interface.

Uncached

Table 4-8 CPU Access to dseg Address Range

Transaction LSNM bit in
Debug register

Access

Fetch x dseg address space

Load/Store 1 Kernel Mode address space

Load/Store 0 dseg address space

‘x’ denotes don’t care.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 75

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 4 Memory Management

x8000
FFF
WhenERL is set, the physical address is equal to the virtual address. Refer toFigure 4-8.

4.8.2 Supervisor Mode (sseg)

Addresses in sseg are unmapped (VA=PA) and not affected by theERL bit. Refer toFigure 4-7 andFigure 4-8.

4.8.3 Kernel Mode (kseg0, kseg1 and kseg3)

For kseg0 and kseg1, the translation used is identical to that used for TLB implementations, namely, both VA=0
0000 to 0x9FFF FFFF (kseg0) and VA=0xA000 0000 to 0xBFFF FFFF (kseg1) map to PA=0x0000 0000 to 0x1
FFFF. Mapping is independent of theERL bit. Refer toFigure 4-7 andFigure 4-8.

Addresses in kseg3 are unmapped (VA=PA) and not affected by theERL bit. Refer toFigure 4-7 andFigure 4-8.

Figure 4-7 FMT Memory Map (ERL=0)

kseg3

sseg

kseg1

kseg0

useg/kuseg reserved

0x0000_00000x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000 0xE000_0000

0xC000_0000

0x2000_0000

0x4000_0000
76 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

4.8 FMT Memory Maps

ses with
and
Figure 4-8 FMT Memory Map (ERL=1)

4.8.4 Debug Mode

In Debug Mode with the FMT option, address mapping is the same as the mapping used for debug-mode addres
a TLB (refer toSection 4.7.5, "Address Translation in Debug Mode"). In both cases, dseg addresses are unmapped
uncached.

kseg3

sseg

kseg1

kseg0

useg/kuseg

0x0000_00000x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000 0xE000_0000

0xC000_0000

0x8000_0000
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 77

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 4 Memory Management
78 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

or core.

nsfer of
the
andles

ns are
mple

d the
defined

 current

dition
ns will

f their
Chapter 5

Exception Processing

This chapter describes CP0 exception processing and all exception conditions supported by the 5K microprocess
The CP0 registers used in exception processing are described in detail inChapter 6, “Coprocessor 0 Registers.”

5.1 Overview

Exceptions are events which result in the suspension of the normal sequence of instruction execution and the tra
control to another sequence of instructions that handles the exceptional condition. When an exception occurs,
relevant instruction and all those that follow it in the pipeline are cancelled, and a new instruction stream that h
the exception begins. Exceptions may beprecise or imprecise. Precise exceptions, sometimes calledsynchronous
exceptions, result from the execution of an instruction, for example, a TLB Invalid exception. Imprecise exceptio
caused by an earlier instruction in the instruction flow or by event unconnected to instruction execution, for exa
hardware interrupts.

When the CP0 detects an exceptional condition, the current sequence of instruction execution is suspended an
processor enters Kernel or Debug Mode, disables interrupts, and starts fetching instructions from one of the pre
exception-handler addresses (known as the exceptionvector). The exception handler saves sufficient processor state
information in CP0 registers to resume program execution after the exception has been handled, including the
operating mode, the masking of interrupts, and the PC of the instruction where execution can be resumed.

There are two types of exceptions supported by the 5K architecture:normal exceptions anddebugexceptions. Normal
exceptions are part of the normal program flow, while debug exceptions are caused by the occurrence of a con
resulting from the debugging process, for example, a predefined break condition. In this chapter, normal exceptio
be described first, followed by a description of the debug exceptions.

Table 5-1contains a list and a brief description of all exception conditions. The exceptions are listed in the order o
relative priority, from highest priority (Reset/EJTAG Boot) to lowest priority (TLB Modified - Data Access).

Table 5-1 Priority of Exceptions

Exception Description

EJTAG Boot Simultaneous assertion of EJ_DINT and one of the reset signals
(SI_ColdReset or SI_Reset).

Reset Assertion of SI_ColdReset.

Soft Reset Assertion of SI_Reset.

Debug Single Step Debug Single Step.

Debug Interrupt Assertion of EJ_DINT.

Debug Data Break on Load ImpreciseDebug Data Break on Load Imprecise (Data Break on Load with address
+ value match).

Non Maskable Interrupt (NMI) Asserting edge of SI_NMI detected.

Cache Error - Data access Cache error on a load or store data reference (imprecise).

Machine Check TLB write which would cause multiple matching entries in the TLB
(imprecise).
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 79

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 5 Exception Processing
Data Bus Error Bus error on a load or store data reference (imprecise).

Interrupt Assertion of enabled hardware or software interrupt.

Deferred Watch Deferred Watch (unmasked by EXL and ERL being cleared or exiting
Debug Mode).

Debug Instruction Hardware Break Debug Instruction Hardware Break.

Watch - instruction fetch Watch address match detected on an instruction fetch.

Address Error - instruction fetch Instruction fetch with address alignment error or instruction fetch from
protected or invalid address area.

TLB/XTLB Refill - instruction fetch TLB miss on instruction fetch.

TLB Invalid - instruction fetch The Valid bit set to zero in the TLB entry matching the address referenced
by an instruction fetch.

Cache Error - instruction fetch Cache error on an instruction fetch.

Instruction Bus Error Bus error on an instruction fetch.

Debug Breakpoint Debug Breakpoint. Execution of SDBBP instruction.

Instruction Validity exceptions

CpU, MDMX, RI: An instruction could not be completed because it was
not allowed access to the required resources, or it was illegal: Coprocessor
Unusable (CpU or MDMX), Reserved Instruction (RI). If both exceptions
occur on the same instruction, the Coprocessor Unusable exception has
higher priority.

Execution exception

Sys: Execution of SYSCALL instruction.

Bp: Execution of BREAK instruction.

RI: Execution of a Reserved Instruction.

Ov: Execution of an arithmetic instruction that overflows.

Tp: Execution of a trap (when trap condition is true).

FPE and C2E: Floating-point exception and COP2 exception from
optional attached coprocessor(s).

Debug Data Break, load or store Debug Data Break on Load (address only) or Debug Data Break on Store
(address only or address + data value).

Watch - data access Reference to an address matching one of the watch registers (data).

Address Error - load
Data load address alignment error.

Data load reference from protected or invalid address area.

Address Error - store
Store address alignment error.

Store to protected or invalid address area.

TLB/XTLB Refill - data access TLB miss on a data access.

TLB Invalid - data access The valid bit set to zero in the TLB entry matching the address referenced
by a load or store instruction.

TLB Modified - data access The Dirty bit set to zero in the TLB entry matching the address referenced
by a store instruction.

Cache Error - instruction cache Cache error detected in the instruction cache by the CACHE instruction.

Table 5-1 Priority of Exceptions (Continued)

Exception Description
80 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

5.1 Overview

ey have
ctions,

e

indicate
ta Break

 Debug

tor
5.1.1 Interrupt and NMI Latency

Some instructions cannot be cancelled by the occurrence of any exception other than a TLB exception after th
entered the Memory Fetch (M) stage of the pipeline. Thus, if there is a slip in the M stage of one of these instru
the time required to respond to an interrupt will increase. (Refer toSection 2.9, "Slip Conditions and Interlock
Handling".) In this case, interrupt-latency calculations must take into account any stall due to transactions on th
processor bus. These instructions include all loads and stores, PREF(X), and CACHE.

Not all exceptions need be considered in latency calculations. For example, the Bus/Cache Errors on data access
catastrophic system conditions, and the exceptions used in debugging, such as Debug Interrupt and Debug Da
on Load Imprecise, only occur in Debug Mode.

5.1.2 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 0xFFFF.FFFF.BFC0.0000. EJTAG
exceptions are vectored to location 0xFFFF.FFFF.BFC0.0480 ifDebug ControlProbTrap= 0; otherwise, they are vectored
to 0xFFFF.FFFF.FF20.0200. Note that while in Debug Mode, the block of addresses starting at the EJTAG vec
(0xFFFF.FFFF.FF20.0200) are mapped to the TAP interface, and not to system memory (refer to Chapter10).

Vector addresses for all other exceptions are a combination of a vector offset and a base address.Table 5-2specifies the
vector base address for each exception, taking into account the state of theStatusregister’sBEVbit. Table 5-3specifies
the exception base-address offsets, andTable 5-4 provides the vector addresses.

Table 5-2 Exception Vector Base Addresses

Exception StatusBEV

0 1

Reset, Soft Reset, NMI 0xFFFF.FFFF.BFC0.0000

Debug (with
Debug ControlProbTrap = 0) 0xFFFF.FFFF.BFC0.0480

Debug (with
Debug ControlProbTrap = 1) 0xFFFF.FFFF.FF20.0200

Cache Error 0xFFFF.FFFF.A000.0000 0xFFFF.FFFF.BFC0.0200

Other 0xFFFF.FFFF.8000.0000 0xFFFF.FFFF.BFC0.0200

Table 5-3 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL = 0 0x000

64-bit XTLB Refill, EXL = 0 0x080

Cache error 0x100

Interrupt, CauseIV = 1 0x200

General Exception 0x180

Reset, Soft Reset, NMI None (Uses Reset Base Address)
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 81

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 5 Exception Processing

ng
ction is in

f the

cial
5.1.3 EPC, ErrorEPC, and DEPC Values

For those exceptions that cause theEPC, ErrorEPC, orDEPCregister to be loaded with the address at which processi
can be resumed after the exception has been handled, the address depends on whether or not the current instru
the delay slot of a branch or jump instruction: if the current instruction is in a delay slot, the new value in theEPC,
ErrorEPC, orDEPCregister is the PC of the preceding jump or branch instruction; if not, the new value is the PC o
current instruction. When theEPC or DEPC register is loaded for an instruction in a branch delay slot,CauseBD or
DebugDBD respectively is set; otherwise, the bit is cleared.

5.1.4 General Exception Processing

With the exception of the Reset, Soft Reset, NMI, and Debug-Mode exceptions, each of which has its own spe
processing described later in this chapter, all exception conditions are processed as follows:

• If the EXL bit in theStatus register is zero, theEPC register is loaded with the PC at which execution may be
resumed, and the Cause register’sBD bit is set to the appropriate value. (The specific value for theEPC register is

Table 5-4 Exception Vectors

Exception BEV EXL IV Debug Control
[ProbTrap]

Vector Address

Reset, Soft Reset, NMI xa x x x 0xFFFF.FFFF.BFC0.0000

Debug x x x 0 0xFFFF.FFFF.BFC0.0480

Debug x x x 1 0xFFFF.FFFF.FF20.0200

TLB Refill 0 0 x x 0xFFFF.FFFF.8000.0000

XTLB Refill 0 0 x x 0xFFFF.FFFF.8000.0080

TLB Refill 0 1 x x 0xFFFF.FFFF.8000.0180

XTLB Refill 0 1 x x 0xFFFF.FFFF.8000.0180

TLB Refill 1 0 x x 0xFFFF.FFFF.BFC0.0200

XTLB Refill 1 0 x x 0xFFFF.FFFF.BFC0.0280

TLB Refill 1 1 x x 0xFFFF.FFFF.BFC0.0380

XTLB Refill 1 1 x x 0xFFFF.FFFF.BFC0.0380

Cache Error 0 x x x 0xFFFF.FFFF.A000.0100

Cache Error 1 x x x 0xFFFF.FFFF.BFC0.0300

Interrupt 0 0 0 x 0xFFFF.FFFF.8000.0180

Interrupt 0 0 1 x 0xFFFF.FFFF.8000.0200

Interrupt 1 0 0 x 0xFFFF.FFFF.BFC0.0380

Interrupt 1 0 1 x 0xFFFF.FFFF.BFC0.0400

All others 0 x x x 0xFFFF.FFFF.8000.0180

All others 1 x x x 0xFFFF.FFFF.BFC0.0380

a. An x denotes “don’t care”.
82 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

5.2 Reset Exception

e

ed by

iption

set
a state
described inSection 5.1.3, "EPC, ErrorEPC, and DEPC Values") If the EXLbit in theStatusregister is set to one, the
EPC register is not loaded, and theBD bit is not changed.

• TheCoprocessor Exception(CE)bit andExcCodefields of theCauseregister are loaded with the values appropriat
to the exception. TheCE field is loaded for all non-debug exceptions that update theCause register, but is only
defined for the Coprocessor Unusable exception.

• TheEXL bit is set in theStatus register.

• Processing is started at the exception vector (refer toTable 5-1).

The value loaded intoEPC is the return address for the exception, and in most cases does not need to be modifi
exception-handler software. Nor, in most cases, does software have to read the value of theCause register’sBD bit.
However, in the case of precise exceptions, software can combine the information provided inEPCandBD to identify
the address of the instruction that caused the exception.

Individual exception types may load additional information into other CP0 registers, and this is noted in the descr
of each individual exception in later sections of this chapter.

The basic sequence of general exception-processing operations is summarized below.

if StatusEXL = 0
if InstructionInBranchDelaySlot then

EPC <- PC of branch
CauseBD <- 1

else
EPC <- PC of instruction
CauseBD <- 0

endif
if ExceptionType = TLBRefill then

vectorOffset <- 0x000
elseif ExceptionType = XTLBRefill then

vectorOffset <- 0x080
elseif (ExceptionType = Interrupt) and

 (Cause IV = 1) then
vectorOffset <- 0x200

else
vectorOffset <- 0x180

endif
else

vectorOffset <- 0x180
endif

CauseCE <- FaultingCoprocessorNumber
CauseExcCode <- ExceptionType

Status EXL <- 1
if Status BEV = 1 then

PC <- 0xFFFF.FFFF.BFC0.0200 + vectorOffset
else

PC <- 0xFFFF.FFFF.8000.0000 + vectorOffset
endif

5.2 Reset Exception

A Reset exception occurs when a hard reset is signaled to the processor by the assertion ofSI_ColdResetwhileEJ_DINT
is deasserted. This exception is not maskable. When a reset exception occurs, the processor performs a full re
initialization, including aborting state machines, establishing critical state, and generally placing the processor in
in which it can execute instructions from uncached, unmapped address space.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 83

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 5 Exception Processing

tion, as

in a state
ions may
rdware
On a reset exception, the state of the processor is not defined, with the following exceptions:

• TheRandom register is initialized to the number of TLB entries - 1.

• TheWired register is initialized to zero.

• TheConfig andConfig1 registers are initialized with their reset state.

• TheBEV, TS, SR, NMI, andERL fields of theStatus register are initialized to a specified state.

• TheErrorEPC register is loaded as described inSection 5.1.3, "EPC, ErrorEPC, and DEPC Values" Note that this
values may or may not be predictable.

• TheDebug register is initialized as documented inSection 6.20, "Debug Register (CP0 Register 23, Select 0)"

• Processing is started at the Reset exception vector.

Cause Register ExcCode Value

None

Additional State Saved

None

Exception Vector Used

Reset

Operation

Random <- TLBEntries - 1
Wired <- 0
Config <- ConfigurationState
Config K0 <- 2
Config1 <- ConfigurationState

StatusBEV <- 1
StatusTS <- 0
StatusSR <- 0
StatusNMI <- 0
StatusERL <- 1
StatusRP <- 0

WatchLo I <- 0
WatchLo R <- 0
WatchLo W <- 0
if InstructionInBranchDelaySlot then

ErrorEPC <- PC of branch
else

ErrorEPC <- PC of current instruction
endif
PC <- 0xFFFF.FFFF.BFC0.0000

5.3 Soft Reset Exception

A Soft Reset exception occurs when the soft reset is signaled to the processor by the assertion ofSI_Reset. This exception
is not maskable. When a soft reset exception occurs, the processor performs a subset of the full reset initializa
described below.

A Soft Reset exception does not unnecessarily change the state of the processor, but does place the processor
in which it can execute instructions from uncached, unmapped address space. Since bus, cache, or other operat
be interrupted, portions of the cache, memory, or other processor state may be inconsistent. In addition to any ha
initialization required, the following state is established on a Soft Reset exception:
84 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

5.4 Non-maskable Interrupt (NMI) Exception

 The
, with the
• TheBEV, TS, SR, NMI, andERL fields of theStatus register are initialized to a specified state.

• TheErrorEPC register is loaded as described inSection 5.1.3, "EPC, ErrorEPC, and DEPC Values" Note that this
value may or may not be predictable.

• TheDebug register is initialized as documented inSection 6.20, "Debug Register (CP0 Register 23, Select 0)"

• Processing is started at the Reset exception vector.

Cause Register ExcCode Value

None

Additional State Saved

None

Exception Vector Used

Reset

Operation

StatusBEV <- 1
StatusTS <- 0
StatusSR <- 1
StatusNMI <- 0
StatusERL <- 1
if InstructionInBranchDelaySlot then

ErrorEPC <- PC of branch
else

ErrorEPC <- PC of current instruction
endif
PC <- 0xFFFF.FFFF.BFC0.0000

5.4 Non-maskable Interrupt (NMI) Exception

A Non-maskable interrupt exception occurs when the processor detects a rising edge of the NMI signal,SI_NMI. An
NMI exception is masked when the processor is in Debug Mode, or when the NMI Enable (NMIE) bit in theDebug
Control register is set to zero.

An NMI occurs only on instruction boundaries, so it does not perform any reset or other hardware initialization.
state of the cache, memory, and other processor state is consistent. The contents of all registers are preserved
following exceptions:

• TheBEV, TS, SR, NMI, andERL fields of theStatus register are initialized to a specified state.

• TheErrorEPC register is loaded as described inSection 5.1.3, "EPC, ErrorEPC, and DEPC Values".

• Processing is started at the Reset exception vector.

Note that one of the features of EJTAG debug is to allow postponing of the NMI exception by clearing theDebug Control
NMIE bit. This does not mask the edge detection on theSI_NMIsignal, but it defers the exception until theDebug
ControlNMIE bit is set. For further information, refer toSection 10.2.6, "Interrupts and NMIs".

Cause Register ExcCode Value

None

Additional State Saved

None
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 85

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 5 Exception Processing

use

ected,
e,

 in the
Exception Vector Used

Reset

Operation

if DebugControl NMIE = 1 then
StatusBEV <- 1
StatusTS <- 0
StatusSR <- 0
StatusNMI <- 1
StatusERL <- 1
if InstructionInBranchDelaySlot then

ErrorEPC <- PC of branch
else

ErrorEPC <- PC of current instruction
endif
PC <- 0xFFFF.FFFF.BFC0.0000

else
DeferNMIException

endif

5.5 Machine Check Exception

A Machine Check exception occurs when there is an attempt to execute a TLB write instruction which would ca
multiple matching entries in the TLB. TheTS bit in theStatus register is set to indicate this condition. It is the
responsibility of software to handle this exception, perhaps by flushing the entire TLB. If the condition can be corr
software must clear the TLB Shutdown (TS)bit in theStatusregister before resuming normal operation. In Debug Mod
this exception is deferred when theImprecise Error Exception Inhibitbit in theDebugregister is set; the Machine Check
exception occurs when theIEXI bit is cleared or when software return from Debug Mode.

Since the multiple match condition is detected during a TLB write, the processor will preserve the entry already
TLB.

Cause Register ExcCode Value

MCheck

Additional State Saved

None

Exception Vector Used

General exception vector, offset = 0x180

Operation

SeeSection 5.1.4, "General Exception Processing".

5.6 Address Error Exception

An address error exception occurs when there is an attempt to perform any of the following operations:

• Instruction fetch, load, or store of a word that is not aligned on a word boundary

• Load or store of a doubleword that is not aligned on a doubleword boundary

• Aligned load or store of a word that is not aligned on a word boundary
86 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

5.7 TLB and XTLB Refill Exceptions

h a

g mode

r an
• Load or store of a half-word that is not aligned on a half-word boundary

• Reference to the Kernel address space from Supervisor or User Mode

• Reference to the Supervisor address space from User Mode

• Reference an undefined, unimplemented, or disabled memory segment from any Mode

Cause Register ExcCode Value

ADEL: Reference was a load or an instruction fetch

ADES: Reference was a store

Additional State Saved

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"

5.7 TLB and XTLB Refill Exceptions

A TLB or XTLB (extended TLB) Refill exception occurs in a TLB-based MMU when none of the TLB entries matc
reference to a mapped address space and theEXLbit in theStatusregister is zero. Note that this is distinct from the TLB
Invalid exception, which occurs when a TLB entry matches, but the entry’s Valid bit is zero.

The XTLB refill handler is used whenever a reference is made to a 64-bit mode memory region. The addressin
of a region is controlled by theStatusKX bit if the region is in Kernel address space, theStatusSX bit if the region is in
Supervisor address space, and by theStatusUX bit if the region is in User address space. Refer toChapter 4, “Memory
Management,” for a description of Kernel and User address spaces.

The TLB and XTLB Refill exceptions have distinct exception vector offsets: 0x000 for a TLB Refill, and 0x080 fo
XTLB Refill.

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Register Value

BadVAddr Failing address

ContextVPN2 Not defineda

a. Software should not in any way depend on the fact that some of the bits of BadVAddr are
also visible in this register.

XContextVPN2
XContextR

Not defineda

EntryHiVPN2

EntryHiR
Not defined

EntryLo0 Not defined

EntryLo1 Not defined
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 87

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 5 Exception Processing

ress

ce to
BL
robe
Additional State Saved

Exception Vector Used

TLB Refill vector (general exception vector, offset 0x000) if access was to 32-bit address space andStatusEXL = 0 at
the time of exception.

XTLB Refill vector (general exception vector, offset 0x080) if access was to 64-bit address space andStatusEXL = 0 at
the time of exception.

General exception vector, offset 0x180, ifStatusEXL = 1 at the time of exception, regardless of address space

Operation

SeeSection 5.1.4, "General Exception Processing"

5.8 TLB Invalid Exception

A TLB Invalid exception occurs when a TLB entry in a TLB-based MMU matches a reference to a mapped add
space, but the matched entry has the Valid bit set to zero.

Note that a TLB Invalid exception is indistinguishable from the condition in which no TLB entry matches a referen
a mapped address space andStatusEXL= 1. Both use the general exception vector and supply an ExcCode value of TL
or TLBS. The only way to distinguish these two cases is to probe the TLB for a matching entry, using the TLB P
(TLBP) instruction.

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Register Value

BadVAddr Failing address

ContextVPN2 VPN2 of failing address

XContextVPN2
XContextR

R/VPN2 of failing address

EntryHiVPN2

EntryHiR
R/VPN2 of failing address

EntryLo0 Not defined

EntryLo1 Not defined
88 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

5.9 TLB Modified Exception

nd the

r is in a
e for
Additional State Saved

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"

5.9 TLB Modified Exception

A TLB Modified exception occurs in a TLB-based MMU when a store instruction references a mapped address, a
matching TLB entry has the Dirty bit cleared (indicating that the entry cannot be modified).

Cause Register ExcCode Value

Mod

Additional State Saved

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"

5.10 Cache Error Exception

A Cache Error exception occurs when an instruction or data reference detects a cache error. Because the erro
cache, the exception vector is an unmapped, uncached address. Note that the Cache Error exception is precis

Register Value

BadVAddr Failing address

ContextVPN2 VPN2 of failing address

XContextVPN2
XContextR

R/VPN2 of failing address

EntryHiVPN2

EntryHiR
R/VPN2 of failing address

EntryLo0 Not defined

EntryLo1 Not defined

Register Value

BadVAddr Failing address

ContextVPN2 VPN2 of failing address

XContextVPN2
XContextR

R/VPN2 of failing address

EntryHiVPN2

EntryHiR
R/VPN2/B of failing address

EntryLo0 Unchanged

EntryLo1 Unchanged
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 89

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 5 Exception Processing

ed

eed not

an
g

g

instruction cache errors, and that theErrorEPC register will contain either the PC of the instruction that actually caus
the reference, or the immediately preceding jump or branch instruction, as described inSection 5.1.3, "EPC, ErrorEPC,
and DEPC Values"However, cache errors in the data cache cause imprecise exceptions, and they are not guarant
to update memory or CP0 registers. While in Debug Mode, this exception is deferred when theImprecise Error
Exception Inhibitbit in theDebugregister is set; the Cache Error exception occurs when theIEXI bit is cleared or when
software returns from Debug Mode.

Cause Register ExcCode Value

N/A

Additional State Saved

Exception Vector Used

Cache error vector, offset 0x100.

Operation

CacheErr <- ErrorState
if InstructionInBranchDelaySlot then

ErrorEPC <- PC of branch
else

ErrorEPC <- PC current instruction
endif

if StatusBEV = 1 then
PC <- 0xFFFF.FFFF.BFC0.0200 + 0x100

else
PC <- 0xFFFF.FFFF.A000.0000 + 0x100

endif

5.11 Bus Error Exception

A Bus Error exception occurs when an instruction or data access make a bus request (due to a cache miss or
uncacheable reference) and that request terminates with an error. Since the processor implements non-blockin
(scheduled) loads, in most cases theEPC register will not contain the PC of the instruction which caused the bus
transaction. While in Debug Mode, this exception is deferred when theImprecise Error Exception Inhibit bit in the
Debugregister is set; the Bus Error exception occurs when theIEXI bit is cleared or when software returns from Debu
Mode.

Cause Register ExcCode Value

IBE: Error on an instruction reference (precise)

DBE: Error on a data reference (imprecise)

Additional State Saved

None

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"

Register Value

CacheErr Error state
90 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

5.12 Integer Overflow Exception
5.12 Integer Overflow Exception

An integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value

Ov

Additional State Saved

None

Exception Vector Used

General exception vector, offset 0x180.

Operation

SeeSection 5.1.4, "General Exception Processing"

5.13 Trap Exception

A Trap exception occurs when the condition tested by a trap instruction is TRUE.

Cause Register ExcCode Value

Tr

Additional State Saved

None

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"

5.14 System Call Exception

A System Call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value

Sys

Additional State Saved

None

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 91

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 5 Exception Processing

ted.

either

ither:
5.15 Breakpoint Exception

A Breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value

Bp

Additional State Saved

None

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"

5.16 Reserved Instruction Exception

A Reserved Instruction exception occurs when a reserved or undefined major opcode or function field is execu

For coprocessor instructions issued to the coprocessor interface, signaling of this exception is handled by the
coprocessor.

This exception will also be signaled for instructions performing 64-bit operations when these are not enabled (by
Kernel or Debug Mode, or byStatusPX or StatusUX in User Mode)

Cause Register ExcCode Value

RI

Additional State Saved

None

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"

5.17 Coprocessor Unusable Exception

A Coprocessor Unusable exception occurs when an attempt is made to execute a coprocessor instruction for e

• A coprocessor that has not been marked usable by setting itsCU bit in theStatus register

• The CP0, when it has not been marked usable, and the processor is executing in User Mode

Cause Register ExcCode Value

CpU
92 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

5.18 MDMX Coprocessor Unusable Exception

either:

sor
Additional State Saved

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"

5.18 MDMX Coprocessor Unusable Exception

A MDMX Coprocessor Unusable exception occurs when an attempt is made to execute a MDMX instruction if

• No coprocessor implementing MDMX is attached to the processor

• The attached MDMX coprocessor has not been enabled by the MD bit in the Status register.

Cause Register ExcCode Value

MDMX

Additional State Saved

None.

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"

5.19 Floating-Point Exception

The Floating-point exception is signaled by an attached FPU by signaling an FPE exception over the coproces
interface. If no FPU is attached, the coprocessor exception signals must be tied to zero.

Cause Register ExcCode Value

FPE

Additional State Saved

If a FPU is attached, then refer to the documentation for that FPU.

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"

Register Value

CauseCE Unit number of the coprocessor being referenced
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 93

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 5 Exception Processing

rocessor

ust
5.20 Coprocessor 2 Exception

The Coprocessor 2 exception is signaled by an attached coprocessor by signaling an C2E exception over the cop
interface. If no coprocessor is attached the coprocessor exception signals must be tied to zero.

Cause Register ExcCode Value

C2E

Additional State Saved

If a coprocessor is attached, then refer to the documentation for that coprocessor.

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"

5.21 Watch Exception

The watch exception occurs when an instruction or data reference matches the address information stored in theWatchHi
andWatchLo registers. A watch exception is taken immediately if theEXL andERL bits in theStatus register are both
zero. If either bit is a one when the Watch exception would normally be taken, the Watch Pending bit (WP)in theCause
register is set, and the exception is deferred until both theEXL andERL are zero. Software may use theWP bit in the
Cause register to determine if theEPC register points to the instruction that caused the Watch exception, or if the
exception occurred while in Kernel Mode. TheWPbit directly causes a watch exception, so the exception handler m
clear this bit in order to prevent a Watch exception loop when the handler completes.

Cause Register ExcCode Value

WATCH

Additional State Saved

Exception Vector Used

General exception vector, offset 0x180

Operation

SeeSection 5.1.4, "General Exception Processing"

5.22 Interrupt Exception

The processor supports eight interrupt requests, which can be grouped into the following four categories:

• Software interrupts - Two software interrupt requests are made via software writes to theIP0 andIP1 bits in the
Cause register.

Register Value

CauseWP
If set, this bit indicates that the Watch exception was
deferred until bothStatusEXL andStatusERL were zero.
94 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

5.22 Interrupt Exception

s to the
ntil

ed
• Hardware interrupts - Six hardware interrupt requests, numbered 0 through 5, are made via external request
processor. Hardware interrupts are level-sensitive, and an interrupt should hold its interrupt signal asserted u
explicitly cleared by software.

• Timer interrupt - Hardware interrupt 5 can be used for the timer interrupt. Refer to the description of theCount and
Compare registers in Chapter6 for further details on how to use those registers to generate timer interrupts.

• Performance counter overflow - Hardware interrupt 5 is internally ORed with the overflow indication from the
performance counters. For more details, refer toSection 6.22, "Performance Counter Register (CP0 Register 25,
select 0-3)".

The current interrupt requests are visible at any time by reading theIP field in theCause register (not just after an
interrupt exception has occurred). The mapping ofCauseregister bits to the various interrupt requests is shown inTable
5-5.

For hardware interrupts,SI_Int[0:5] are masked by theIntE bit of theDebug Controlregister before they are written to
theIP2-IP7 bits of theCause register.

For each bit in theIP field in theCause register, there is a corresponding bit in theIM field of theStatus register. An
interrupt is taken only when all of the following are true:

• An interrupt request bit is a one in theIP field of theCause register.

• The corresponding mask bit is a one in theIM field of theStatusregister. (The mapping of bits is shown inTable 5-5.)

• TheIE bit in theStatus register is a one.

• TheEXL andERL bits in theStatus register are both zero.

• TheIntE of the EJTAGDebug Control Register is set.

Logically,CauseIP is bitwise ANDed withStatusIM, the eight resulting bits are ORed together, and that value is AND
with StatusIE. The final interrupt request is then signaled only if bothStatusEXLandStatusERLare zero, corresponding to
a non-exception, non-error processing mode.

Note that EJTAG is capable of masking interrupts in Non-Debug Mode.

Table 5-5 Mapping of Interrupts to the Cause and Status Registers

Cause Register Bit Status Register Bit

Interrupt Type Input
Name

Interrupt
Number

Number Name Number Name

Software interrupt
0 8 IP0 8 IM0

1 9 IP1 9 IM1

Hardware interrupt

SI_Int[0] 0 10 IP2 10 IM2

SI_Int[1] 1 11 IP3 11 IM3

SI_Int[2] 2 12 IP4 12 IM4

Hardware interrupt or
coprocessor interrupt SI_Int[3] 3 13 IP5 13 IM5

Hardware interrupt SI_Int[4] 4 14 IP6 14 IM6

Hardware interrupt or
Timer interrupt SI_Int[5] 5 15 IP7 15 IM7
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 95

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 5 Exception Processing
Register ExcCode Value

Int

Additional Information

Exception Vector Used

General exception vector, offset 0x180, if theIV bit in theCause register is zero.

General exception vector, offset 0x200, if theIV bit in theCause register is one.

Operation

SeeSection 5.1.4, "General Exception Processing"

5.23 Debug Exceptions

The 5K processor supports the following six debug exceptions:

• Debug Single-Step (DSS)

• Debug Interrupt (DINT) with EJTAG Boot as a special case

• Debug Instruction Break (DIB)

• Debug Data Break on Load with address match only (DDBL)

• Debug Data Break on Store (DDBS)

• Debug Data Break on Load Imprecise with address and data match (DDBLImpr)

• Debug software Breakpoint (DBp)

5.23.1 Exception Handling of Debug Exceptions

All debug exceptions are processed as follows:

• TheDEPCregister and theDBD bit of theDebugregister are updated as specified inSection 5.1.3, "EPC, ErrorEPC,
and DEPC Values".

• TheDebugregister bitsDSS, DINT, DIB, DDBL, DDBS, DDBLImpr, andDBpare updated appropriately, depending
on the debug exception.

• DExcCode field in theDebug register is undefined.

• TheHalt andDoze bits in theDebug register are updated to reflect the state of the hardware at the time of the
exception.

• IEXI bit in Debug register is set to inhibit imprecise exceptions in the start of the debug handler.

• TheDM bit in theDebug register is set to enter Debug Mode.

• Processing is started at the debug exception vector.

Cause Register ExcCode Value

N/A

Register Value

CauseIP Indicates the interrupts that are pending.
96 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

5.23 Debug Exceptions

t, pos-
or the

ception

ruction.

es the
ches the
Additional State Saved

None

Note thatDDBLImprmay be set when other debug exception bits are also set, since it indicates a one-time even
sibly triggered by an instruction which has completed prior to the occurrence of the other debug exception. F
same reason,DDBLImpr may also be set by the processor after Debug Mode has been entered. The debug ex
handler should execute a SYNC instruction as part of its entry code to ensure thatDDBLImpr has been updated with
any outstanding imprecise debug data breakpoints.

Exception Vector Used

Debug exception vector (0xFFFF.FFFF.BFC0.0480 or 0xFFFF.FFFF.FF20.0200).

Operation

if InstructionInBranchDelaySlot then
DEPC <- PC of branch
DebugDBD <- 1

else
DEPC <- PC current instruction
DebugDBD <- 0

endif
Debug[DDBLImpr, DINT - DSS] <- DebugExceptionType
DebugHalt <- HaltStatusAtDebugExceptionTime

DebugDoze <- DozeStatusAtDebugExceptionTime
DebugDExcCode <- UNPREDICTABLE
DebugIEXI <- 1

DebugDM <- 1
if DebugControlProbTrap = 1 then

PC <- 0xFFFF.FFFF.FF20.0200
eelse

PC <- 0xFFFF.FFFF.BFC0.0480
ndif

5.23.2 Debug Breakpoint Exception

A Debug Breakpoint exception occurs when an SDBBP instruction is executed.

Debug Register Debug Status Bit Set

DBp

5.23.3 Debug Instruction Break Exception

A Debug Instruction Break exception occurs when an instruction hardware breakpoint matches an executed inst
TheDEPC register andDBD bit in theDebug register indicate the instruction that caused the instruction hardware
breakpoint match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set

DIB

5.23.4 Debug Data Break Load/Store Exception

A Debug Data Break Load exception occurs when a data hardware breakpoint with address match only match
address of a load instruction. A Debug Data Break Store exception occurs when a data hardware breakpoint mat
address and optionally the store value of a store instruction. TheDEPC register andDBD bit in theDebug register
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 97

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 5 Exception Processing

ception.
register
n only
ts with

ss of an
 occurs

rdware
ion
pdates
ata

n if the
ception

ed and
 debug

-Debug
d the

e the
before

ion
on an
 in one

Mode,
ug Single
indicate the load/store instruction that caused the data hardware breakpoint match, as this is a precise debug ex
The load/store instruction that caused the debug exception has not completed (it has not updated the destination
or memory location), and the instruction is therefore executed on return from the debug handler. This exception ca
occur if data hardware breakpoints with precise data breaks are implemented and will not occur for load breakpoin
value compare, since that exception is reported as an imprecise Debug Data Break Exception, as described inSection
5.23.5, "Debug Data Break Load Imprecise Exception".

Debug Register Debug Status Bit Set

DDBL (load) or DDBS (store)

5.23.5 Debug Data Break Load Imprecise Exception

A Debug Data Break Load Imprecise exception occurs when a data hardware breakpoint matches a load acce
executed load instruction, and it is not possible to take a precise debug exception on the instruction. This case
when a data hardware breakpoint was set up with a value compare. TheDEPC register and theDBD bit in theDebug
register indicate an instruction later in the execution flow instead of the load instruction that caused the data ha
breakpoint match. TheDDBLImprbit in theDebugregister indicates that a Debug Data Break Load Imprecise except
occurred. The instruction that caused the Debug Data Break Load Imprecise exception will have completed. It u
its destination register and is not executed on return from the debug handler. This exception can only occur if d
hardware breakpoints with imprecise data breakpoints are implemented.

Imprecise debug exceptions from data hardware breakpoints are indicated together with another debug exceptio
load transaction that caused the data hardware breakpoint match did not complete until after another debug ex
occurred. In this case, the other debug exception was the cause of entering Debug Mode, so theDEPC register and the
DBD bit in theDebug register point to the instruction causing that exception.

A SYNC instruction must be executed by the debug exception handler before theDDBLImpr bit in theDebug register
and theBS[n] bits for the data hardware breakpoint are read, in order to ensure that all imprecise breaks are resolv
the bits are fully updated. This scheme ensures that all breakpoints matching due to code executed before the
exception are indicated by theDDBLImpr andBS[n] bits.

Debug Register Debug Status Bit Set

DDBLImpr

5.23.6 Debug Single Step Exception

When single-step mode is enabled, a Debug Single Step exception is taken for the second execution step in Non
Mode. An execution step is a single instruction, or an instruction pair consisting of a jump/branch instruction an
instruction in the associated delay slot. TheSSt bit in theDebug register enables Debug Single Step exceptions.

TheDEPCregister points to the instruction on which the Debug Single Step exception occurred, which will also b
next instruction to execute when returning from Debug Mode. The debug software can examine the system state
this instruction is executed. Thus theDEPC will not point to the instruction(s) that have just executed in the execut
step, but rather to the instruction following the execution step. The Debug Single Step exception never occurs
instruction in a jump/branch delay slot. A jump/branch and the instruction in the delay slot are always executed
execution step. TheDBD bit in theDebug register can therefore never be set for a Debug Single Step exception.

The Debug Single Step exceptions will be taken on the second execution step following the return to Non-Debug
regardless of whether the first execution step caused a precise non-debug exception. If this was the case the Deb
Step exception will be taken on the first instruction in the exception handler for the non-debug exception.
98 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

5.23 Debug Exceptions

causes

 Soft

pecific
n

hen the

, a

r

th a
r and
Debug exceptions are unaffected by single-step mode; returning to an SDBBP instruction with single step enabled
a Debug Breakpoint exception with theDEPC register pointing to the SDBBP instruction. However, returning to an
instruction (not jump/branch) just before the SDBBP instruction causes a Debug Single Step exception with theDEPC
register pointing to the SDBBP instruction.

To ensure proper functionality of single-step execution, the Debug Single Step exception has priority just below
Reset.

Debug Register Debug Status Bit Set

DSS

5.23.7 Debug Interrupt Exception

The Debug Interrupt exception is an imprecise debug exception that is taken as soon as possible, but has no s
relation to the executed instructions. TheDEPCregister and theDBD bit in the Debug register reference the instructio
at which execution can be resumed after Debug Interrupt exception service.

Debug interrupt requests are ignored when the processor is in Debug Mode, and pending requests are cleared w
processor takes any debug exception, including debug exceptions other than Debug Interrupt exceptions.

If the processor is in low-power mode with the internal clock stopped due to the execution of a WAIT instruction
Debug Interrupt will restart the clock and the processor pipeline.

Debug Register Debug Status Bit Set

DINT

The following sources can cause Debug Interrupt exceptions:

• The EJ_DINT signal from the probe
The EJ_DINT signal can request a debug interrupt on a low (0) to high (1) transition.
TheEjtagBrk bit in theDebug Control register provides similar DINT functionality from the probe, but with highe
latency.

• TheEjtagBrk Bit in theDebug Control Register
TheEjtagBrkbit in theDebug Controlregister requests a Debug Interrupt exception when set. Refer toSection 10.3,
"Debug Control Register"

• A debug boot by EJTAGBOOT
The EJTAGBOOT feature allows the reset initialization of a Reset or Soft Reset exception to be combined wi
Debug Interrupt exception, so that the processor will fetch the first instruction from the Debug Exception Vecto
not from the Reset Vector.

5.23.8 Handling of Exceptions in Debug Mode

Some exceptions are handled differently in Debug Mode.Table 5-6 specifies these differences.

Table 5-6 Exceptions In Debug Mode

Exception Functionality In Debug Mode

Reset, Soft Reset Identical to Non-Debug Mode in all respects.

Non-maskable Interrupt (NMI),
Interrupt, Deferred Watch, Watch

Ignored. However, the edge detection for NMI is still working, but the
exception is deferred until the processor has left Debug Mode.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 99

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 5 Exception Processing

in
tware,

on
On TLB exceptions in Debug Mode, only theDebugandDEPCregisters are updated, which makes TLB exceptions
Debug Mode more difficult to handle. However, their intended use in Debug Mode is to catch errors in debug sof
and not to behandled.

For the handling of the Reset and Soft Reset exceptions in Debug Mode, refer toSection 5.2, "Reset Exception" and
Section 5.3, "Soft Reset Exception".

All other handled exceptions in Debug Mode are processed as follows:

• TheDEPC register and theDBD bit of theDebug register are updated following the rules inSection 5.1.3, "EPC,
ErrorEPC, and DEPC Values".

• DSS, DINT, DIB, DDBL, DDBS, DDBLImpr, andDBp are cleared.

• TheDExcCodein theDebugregister. Note that the SDBBP instruction is treated exactly like the BREAK instructi
in Debug Mode.

• TheHalt andDoze bits in theDebug register are not defined following the exception.

• Processing is started at the debug exception vector.

• IEXI is set.

Cause Register ExcCode Value

N/A

Additional State Saved

None.

Exception Vector Used

Debug exception vector (0xFFFF.FFFF.BFC0.0480 or 0xFFFF.FFFF.FF20.0200).

Operation

if InstructionInBranchDelaySlot then
DEPC <- PC of branch
DebugDBD <- 1

else
DEPC <- PC current instruction
DebugDBD <- 0

endif
Debug[DINT] <- 1
Debug[DDBLImpr, DIB - DSS] <- 0
DebugDExcCode <- ExcCode.
DebugHalt <- NotDefined

DebugDoze <- NotDefined
if DebugControlProbTrap = 1 then

Machine Check, Address Error,
TLB exceptions, Cache Error, Bus
Error, execution-based exceptions

Exception taken, but handling differs from Non-Debug Mode:

Only DebugandDEPCregisters are updated by the exception; all other
CP0 registers are unaffected.

Debug exception vector is used for servicing.

SDBBP Identical to the BREAK instruction (setsDExcCode to Bp).

All other exceptions Ignored.

Table 5-6 Exceptions In Debug Mode (Continued)

Exception Functionality In Debug Mode
100 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

5.23 Debug Exceptions

eless
tion.

Debug
 Port

.

PC <- 0xFFFF.FFFF.FF20.0200
else

PC <- 0xFFFF.FFFF.BFC0.0480
endif

Note that in systems which do not use the EJTAG debug solution, execution of an SDBBP instruction will neverth
cause a debug exception. In this case, the debug exception should be viewed as a Reserved Instruction excep
Software can return from Debug Mode by executing a DERET instruction after updating theDEPC register with the
address where normal execution is to be resumed.

5.23.9 EJTAG Boot

The EJTAG Boot exception is a combination of two exceptions: a reset exception (Hard or Soft Reset) and the
Interrupt exception. This exception is not maskable, but can only occur when enabled through the Test Access
(TAP). All reset initialization is performed as specified inSection 5.2, "Reset Exception"In addition,DEPCis initialized
to point to the reset vector (0xFFFF.FFFF.BFC0.0000) and theDebugregister is set as if for a Debug Interrupt exception

Cause Register ExcCode Value

None

Additional State Saved

None

Exception Vector Used

Debug (0xFFFF.FFFF.FF20.0200)

Operation

Perform CP0 register initializtion according to the reset (Reset or Soft Reset);
do not fetch from Reset vector;

DEPC <- 0xFFFF.FFFF.BFC0.0000;
Take DINT exception.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 101

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 5 Exception Processing
102 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6

Coprocessor 0 Registers

This chapter describes the Coprocessor 0 (CP0) registers. CP0 registers are summarized inTable 6-1 and described
individually in the remaining sections of this chapter. The read/write properties of register bit fields are specified inTable
6-2.

Table 6-1 Coprocessor 0 Register Summary

Register
Number

Sel Register
Name

Function

0 0 Indexa Index into the TLB array

1 0 Randoma Randomly generated index into the TLB array

2 0 EntryLo0a Low-order portion of the TLB entry for even-numbered virtual
pages

3 0 EntryLo1a Low-order portion of the TLB entry for odd-numbered virtual
pages

4 0 Contexta Pointer to page table entry in memory

5 0 PageMaska Control for variable page size in TLB entries

6 0 Wireda Controls the number of fixed (“wired”) TLB entries

8 0 BadVAddr Reports the address for the most recent address-related
exception

9 0 Count Processor cycle count

10 0 EntryHia High-order portion of the TLB entry

11 0 Compare Timer interrupt control

12 0 Status Processor status and control

13 0 Cause Cause of last general exception

14 0 EPC Program counter at last exception

15 0 PRId Processor identification and revision

16 0 Config Configuration register

16 1 Config1 Configuration register 1

18 0 WatchLo Low-order watchpoint address

19 0 WatchHi High-order watchpoint address

20 0 XContexta Extended-addressing page table context

23 0 Debug Debug register

24 0 DEPC Program counter at exception entering Debug Mode

25 0-3 PerfCnt Performance counter interface

26 0 ErrCtl Parity/ECC error control and status
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 103

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers
27 0 CacheErr Cache parity error control and status

28 0 TagLo Low-order portion of cache tag interface

28 1 DataLo Low-order portion of cache data interface

29 0 TagHi High-order portion of cache tag interface

29 1 DataHi High-order portion of cache data interface

30 0 ErrorEPC Program counter at last error

31 0 DESAVE Debug Exception Save Register

a. This register is only used with the TLB-based MMU.

Table 6-2 Read/Write Properties

Read/Write
Notation

Hardware Interpretation Software Interpretation

R/W

A field in which all bits are readable and writable by hardware and by software.

Hardware updates of this field are visible by a software read and software updates of this field
are visible by a hardware read.

If the Reset state of this field is specified asUndefined, either software or hardware must
initialize the value before a read will return a predictable value. (This should not be confused
with UNDEFINED behavior of the processor.)

R/W1

A field in which all bits are readable and writable by hardware and readable and writable to 1
by software.

Hardware updates of this field are visible by a software read and software updates of this field
are visible by a hardware read.

If the Reset state of this field is specified asUndefined, either software or hardware must
initialize the value before a read will return a predictable value. (This should not be confused
with UNDEFINED behavior of the processor.)

R

A field which is either static or is updated
only by hardware.

If the Reset state of this field is either zero or
Preset, hardware initializes this field to zero
or to the appropriate state, respectively, on
power-up.

If the Reset state of this field isUndefined,
hardware updates this field only under those
conditions specified in the description of the
field.

A field in which the value written by software
is ignored by hardware; that is, software may
write any value to this field without affecting
hardware behavior. Software reads of this
field return the last value updated by
hardware.

If the Reset state of this field isUndefined,
software reads of this field result in an
UNPREDICTABLE value, except after a
hardware update that is done under the
conditions specified in the description of the
field.

0 A field which hardware does not update, and
for which hardware can assume a zero value.

A field in which the value written by software
must be zero. Software writes of non-zero
values to this field may result in
UNDEFINED behavior of the processor.
Software reads of this field return zero if all
previous software writes are zero.

If the Reset state of this field isUndefined,
software must write a zero to this field before
it is guaranteed to read as zero.

Table 6-1 Coprocessor 0 Register Summary (Continued)

Register
Number

Sel Register
Name

Function
104 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.1 Index Register (CP0 Register 0, Select 0)

LBR,

s

TLB.

ecified

. The
6.1 Index Register (CP0 Register 0, Select 0)

Note: This register is only used with a TLB-based MMU.

TheIndexregister is a 32-bit read/write register which contains the index used to access the TLB by the TLBP, T
and TLBWI instructions.

Note that the operation of the processor isUNDEFINED if a value greater than or equal to the number of TLB entrie
is written to the Index register.

Figure 6-1 shows the format of theIndex register;Table 6-3 describes theIndex register fields.

Figure 6-1 Index Register

6.2 Random Register (CP0 Register 1, Select 0)

Note: This register is only used with a TLB-based MMU.

TheRandomregister is a read-only register whose value is used by the TLBWR instruction to index an entry in the

The value of this register varies between an upper and lower bound as follow:

• A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (as sp
by the contents of theWiredregister). The entry indexed by theWiredregister is the first entry available to be written
by a TLB Write Indexed operation.

• An upper bound is set by the total number of TLB entries minus 1.

This register is implemented as a down-counter which is updated following the execution of a TLBWR instruction
decrement is randomized by a Linear Feedback Shift Register (LFSR).

The processor initializes theRandom register to the upper bound on a Reset exception, and when theWired register is
written.

Figure 6-2 shows the format of theRandom register;Table 6-4 describes theRandom register fields.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P 0 Index

Table 6-3 Index Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

P 31 Probe Failure. Set to 1 when the previous TLB Probe
instruction (TLBP) failed to find a match in the TLB. R Undefined

Index 5:0 Index to the TLB entry used by the TLB Read (TLBR)
and TLB Write Index (TLBWI) instructions. R/W Undefined

0 30:6 Must be written as zero; returns zero on read. 0 0
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 105

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers

ns.

g TLB
Figure 6-2 Random Register

6.3 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

Note: EntryLo0 andEntryLo1 are only used with a TLB-based MMU.

The pair ofEntryLo registers act as the interface between the TLB and the TLBR, TLBWI, and TLBWR instructio
EntryLo0 contains the entries for even pages, andEntryLo1 contains the entries for odd pages.

The contents of these registers are only updated by hardware for a TLBR instruction and are undefined followin
and Address Error exceptions.

Figure 6-3 shows the format of theEntryLoregisters;Table 6-5 describes theEntryLoregister fields.

Figure 6-3 EntryLo0, EntryLo1 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Random

Table 6-4 Random Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

Random 5:0 TLB Random Index R TLB Entries - 1

0 31:6 Must be written as zero; returns zero on read. 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PFN C D V G

Table 6-5 32-bit EntryLo0, EntryLo1 Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

PFN 29:6 Page Frame Number. Corresponds to bits [35:12] of the
physical address. R/W Undefined

C 5:3 Coherency attribute of the page. SeeTable 6-6. R/W Undefined

D 2

Dirty bit. Indicates that the page has been written and/or
is writable. If this bit is a one, stores to the page are
permitted. If this bit is a zero, stores to the page cause a
TLB Modified exception.

R/W Undefined

V 1

Valid bit. Indicates that the TLB entry, and thus the
virtual page mapping, is valid. If this bit is a one,
accesses to the page are permitted. If this bit is a zero,
accesses to the page cause a TLB Invalid exception.

R/W Undefined
106 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.4 Context Register (CP0 Register 4, Select 0)

This
s, the

d

Table 6-6 specifies the encoding of theC field of theEntryLo0 andEntryLo1 registers and theK0 field of theConfig
register. Note that the operation of the processor isUNDEFINED if software specifies an unimplemented encoding.

6.4 Context Register (CP0 Register 4, Select 0)

TheContext register is a read/write register containing a pointer to an entry in the page table entry (PTE) array.
array is an operating-system data structure that stores virtual-to-physical translations. When there is a TLB mis
operating system loads the TLB with the missing translation from the PTE array.

TheContext register duplicates some of the information provided in theBadVAddr register, but is organized in such a
way that the operating system can directly reference an 8-byte PTE in memory.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bitsVA31:13 of the virtual address to be written
into theBadVPN2field of theContextregister. ThePTEBasefield is written and read only by the operating system an
is not written by hardware.

TheBadVPN2 field is updated on TLB exceptions and undefined following Address Error exceptions.

Figure 6-4 shows the format of theContext Register;Table 6-7 describes theContext register fields.

Figure 6-4 Context Register

G 0

Global bit. On a TLB write, the logical AND of theG
bits from bothEntryLo0andEntryLo1become theG
bit in the TLB entry. If the TLB entryG bit is a one,
ASID comparisons are ignored during TLB matches. On
a read from a TLB entry, theG bits of bothEntryLo0
andEntryLo1 reflect the state of the TLBG bit.

R/W Undefined

0 31:30 Ignored on write; returns zero on read. R 0

Table 6-6 Cache Coherency Attributes

C Value Cache Coherency Attribute

0 Cacheable, noncoherent, write through, no write-allocate

1 Cacheable, noncoherent, write through, write-allocate

2 Uncached (write-around)

3-6 Cacheable, noncoherent, write-back (write-allocate)

7 Uncached accelerated

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

PTEBase

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PTEBase BadVPN2 0

Table 6-5 32-bit EntryLo0, EntryLo1 Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 107

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers

tains
6.5 PageMask Register (CP0 Register 5, Select 0)

Note: Only used with a TLB-based MMU.

ThePageMaskregister is a read/write register used for reading and writing the PageMask field of a TLB entry. It con
a comparison mask that sets the variable page size for each TLB entry.

Figure 6-5shows the format of thePageMaskregister;Table 6-8describes thePageMaskregister fields. The operation
of the processor for other values of thePageMask than those listed in this table is UNDEFINED.

Figure 6-5 PageMask Register

Table 6-7 Context Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

PTEBase 63:23

This field is for use by the operating system and is
normally written with a value that allows the
operating system to use theContext register as a
pointer into the current PTE array in memory.

R/W Undefined

BadVPN2 22:4

This field contains bits 31:13 of the virtual address in
theBadVAddr register. It is updated on TLB
exceptions and undefined following Address Error
exceptions.

R Undefined

0 3:0 Must be written as zero; returns zero on read. 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Mask 0

Table 6-8 PageMask Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

Mask 24:13
The Mask field is a bit mask in which a “1” bit indicates
that the corresponding bit of the virtual address should
not participate in the TLB match.

R/W Undefined

0 31:25,
12:0 Must be written as zero; returns zero on read. 0 0

Table 6-9 Values for the Mask Field of the PageMask Register

Page Size Bit

24 13

4 Kbytes 0 0 0 0 0 0 0 0 0 0 0 0

16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1
108 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.6 Wired Register (CP0 Register 6, Select 0)

e TLB,

n

6.6 Wired Register (CP0 Register 6, Select 0)

Note: Only used with a TLB-based MMU.

TheWiredregister is a read/write register that specifies the boundary between the wired and random entries in th
as shown inFigure 6-6. Wired entries are fixed, non-replaceable entries which are not overwritten by a TLBWR
instruction. Wired entries can be overwritten by a TLBWI instruction.

Figure 6-6 Wired and Random TLB Entries

TheWiredregister is set to zero by a Reset exception. Writing theWiredregister causes theRandomregister to reset to
its upper bound.

The operation of the processor isUNDEFINED if a value greater than or equal to the number of TLB entries is writte
to theWired register.

Figure 6-7 shows the format of theWired register;Table 6-10 describes theWired register fields.

64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1

256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1

1 Mbyte 0 0 0 0 1 1 1 1 1 1 1 1

4 Mbyte 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1

Table 6-9 Values for the Mask Field of the PageMask Register (Continued)

Page Size Bit

24 13

R
an

do
m

W
ire

d

Entry 0

Entry 10

Entry n-1

10Wired Register
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 109

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers

e

ressing
Figure 6-7 Wired Register

6.7 BadVAddr Register (CP0 Register 8, Select 0)

TheBadVAddr register is a read-only register that contains the most recent virtual address that caused one of th
following exceptions:

• Address error (AdEL or AdES)

• TLB Refill

• TLB Invalid (TLBL, TLBS)

• TLB Modified

TheBadVAddr register does not contain address information for cache or bus errors, because neither is an add
error.

Figure 6-8 shows the format of theBadVAddr register;Table 6-11 describes theBadVAddr register fields.

Figure 6-8 BadVAddr Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Wired

Table 6-10 Wired Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

Wired 5:0 TLB wired boundary. R/W 0

0 31:6 Must be written as zero; returns zero on read. 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

BadVAddr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BadVAddr

Table 6-11 BadVAddr Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

BadVAddr 63:0 Virtual address that caused an exception. R Undefined
110 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.8 Count Register (CP0 Register 9, Select 0)

nd on

efer to

tten
er
6.8 Count Register (CP0 Register 9, Select 0)

TheCount register acts as a timer, incrementing by 1 on every other clock cycle, whether or not an instruction is
executed, retired, or any forward progress is made through the pipeline.

TheCountregister can be written for functional or diagnostic purposes, including synchronization of processors a
Reset.

Figure 6-9 shows the format of theCount register;Table 6-12 describes theCount register fields.

Figure 6-9 Count Register

’

6.9 EntryHi Register (CP0 Register 10, Select 0)

TheEntryHi register contains the virtual address match information used by instructions that access the TLB (r
Section 4.5, "TLB Management Instructions"

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes the mapped bits of the virtual address to be wri
into theVPN2field of theEntryHi register. TheASIDfield is written by software with the current address-space identifi
value and is used during the TLB comparison process to determine a TLB match. TheASID field is not used when an
FMT is connected to the MMU.

TheVPN2 andR fields of theEntryHi register are not defined following an Address Error exception.

Figure 6-10 shows the format of theEntryHi register;Table 6-13 describes theEntryHi register fields.

Figure 6-10 EntryHi Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count

Table 6-12 Count Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

Count 31:0 Interval counter. R/W Undefined

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R Fill VPN2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN2 0 ASID
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 111

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers

.

6.10 Compare Register (CP0 Register 11, Select 0)

TheCompareregister is used in conjunction with theCountregister to implement a timer and a timer interrupt function
TheCompare register maintains a constant value which does not change unless explicitly updated by software.

When the value of theCount register equals the value of theCompare register, the 5K processor core’sSI_TimerInt
output is asserted and continues to be asserted until theCompare register is written by software. This output can be
routed back to the CPU through hardware interrupt 5 to set the Interrupt Pending bit (IP7) in theCause register; when
this bit is set, an interrupt will occur when the interrupt is enabled.

In normal use, theCompare register is write-only. However, for diagnostic purposes, it may be read and written.

Figure 6-11 shows the format of theCompare register;Table 6-14 describes theCompare register fields.

Figure 6-11 Compare Register

Table 6-13 64-bit EntryHi Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

R 63:62

Virtual memory region, corresponding to VA63:62.

00: xuseg (user address region)
01: xsseg (supervisor address region)
10: Reserved
11: xkseg (kernel address region)

R/W Undefined

Fill 61:40 Fill bits. This field is reserved for expansion of the virtual
address space. Returns zeros on read; ignored on write. R 0

VPN2 39:13
VA39:13 of the virtual address (virtual page number / 2).
This field is written by hardware on a TLB exception or on
a TLB read, and is written by software before a TLB write.

R/W Undefined

ASID 7:0

Address Space Identifier. This field is written by hardware
on a TLB read and by software to establish the current
ASID value for TLB writes and TLB comparison during
address translation.

If an FMT is connected to the MMU, this field must be
written as zero; it returns zero on read.

R/W Undefined

0 12:8 Must be written as zero; returns zero on read. 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Compare

Table 6-14 Compare Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

Compare 31:0 Interval count compare value R/W Undefined
112 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.11 Status Register (CP Register 12, Select 0)

nostic
ed below.

 used

ing

ode
the 5K

r 0 is
6.11 Status Register (CP Register 12, Select 0)

TheStatusregister (SR) is a read/write register that contains the operating mode, interrupt enabling, and the diag
states of the processor. Fields of this register combine to create operating modes for the processor, as describ

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

• DebugDM = 0

If these conditions are met, the settings of theIM bits enable the interrupt.

Operating Modes: The 5K supports four operating modes: Kernel, Supervisor, User, and a special Debug Mode
for EJTAG debugging. The encoding of the processor’s operating mode is shown inTable 6-15. In the table, ‘x’ is used
to denote a ‘don’t care’ value. Do not use Status[KSU] =112 under any circumstances.

In addition to the four modes of operation, bits in the Status register can selectively enable or disable the follow
operations:

• 64-bit addressing in user address space - controlled by theUX bit

• 64-bit addressing in supervisor address space - controlled by theSX bit

• 64-bit addressing in kernel address space - controlled by theKX bit

• 64-bit operations - controlled by thePX andUX bits in User Mode. Always enabled in all other modes.

When thePX, UX, SX, andKX bits are cleared, the processor is operating in MIPS32- compatibility mode. This m
guarantees that both user and operating-system code written for MIPS32 processors will execute correctly on
microprocessor core.

Coprocessor Accessibility:TheStatus register’sCU bits control coprocessor accessibility. If any coprocessor is
unusable (itsCU bit is set to zero), an instruction that accesses it generates an exception. Note that Coprocesso
always enabled in Kernel and Debug Modes, regardless of the setting of theCU0 bit.

Figure 6-12 shows the format of theStatus register;Table 6-16 describes theStatus register fields.

Table 6-15 Processor Modes

Debug[DM] Status[EXL] Status[ERL] Status[KSU] Processor Mode

1 x x x Debug

0 1 x x Kernel

0 x 1 x Kernel

0 x x 002 Kernel

0 0 0 012 Supervisor

0 0 0 102 User

x x x 112 UNDEFINED
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 113

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers
Figure 6-12 Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CU3-CU0 RP FR RE MX PX BEV TS SR NMI 0 IM7-IM0 KX SX UX KSU ERL EXL IE

Table 6-16 Status Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

CU
(CU3..CU0) 31:28

Coprocessor Usable. CU2..CU0 control access to
coprocessor 2, 1, and 0 respectively.

0: Access to coprocessor not allowed
1: Access to coprocessor allowed

Coprocessor 0 is always usable when the processor is in
Kernel or Debug Mode, regardless of the state of theCU0
bit.

Coprocessor 1 and 2 can only be marked as usable if a
coprocessor is actually attached to the CPU. For example,
if no coprocessor 2 is attached, software cannot setCU2.
Note that COP1X instructions are enabled by CU1.

CU3 is unused by the processor but is implemented as a
read/write bit for backwards-compatibility. This bit can
only be set to 1 if coprocessor 1 is attached to the CPU.

R/W Undefined

RP 27

Reduced Power. Enables reduced-power mode. The state of
the RP bit is available externally, via theSI_RPsignal, for
use by external logic to enable low-power mode. When a
debug exception is taken, theDebugregister’sDozebit is
set by hardware to the current value ofRP.

0: Low-power mode not enabled
1: Low-powered mode enabled

R/W 0

FR 26

Controls the floating-point register mode:

0: Floating-point registers can contain any 32-bit data type.
64-bit data types are stored in even-odd pairs of registers.

1: Floating-point registers can contain any data type

Certain combinations of the FR bit and other state or
operations can causeUNPREDICTABLE behavior. See
the documentation for the floating-point processor for a
discussion of these combinations.

R/W Undefined

RE 25

Reverse Endian. Enables reverse-endian memory
references in User Mode.

0: User Mode uses configured endianness
1: User Mode uses reversed endianness

Neither Kernel Mode nor Supervisor Mode references are
not affected by the state of this bit.

R/W Undefined

MX 24

Enable access to MDMX™ resources on processors
implementing MDMX. If a coprocessor which implements
MDMX is not attached, the bit must be written as 0 and
ignored on read.

R/W

or

R0

Undefined

or

0

114 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.11 Status Register (CP Register 12, Select 0)
PX 23

Processor Extension. Enables access to 64-bit registers and
operations in User Mode, without enabling 64-bit
addressing.

0: User Mode 64-bit registers and operations disabled
1: User Mode 64-bit registers and operations enabled

R/W Undefined

BEV 22

Bootstrap Exception Vector. Controls the location of
exception vectors. Refer toTable 5-4 in Chapter 5,
“Exception Processing.”

0: Normal
1: Bootstrap

R/W 1

TS 21

TLB Shutdown. Set on Machine Check exceptions caused
by an attempt to execute a TLB write instruction which
would have caused a multiple match in the TLB.

0: No Machine Check exception
1: Machine Check exception

NOTE: Software must clear this bit as part of the handling
of a Machine Check exception; otherwise, a new Machine
Check exception may be take by the processor whenERL
andERL are both 0.

R/W 0

SR 20

Soft Reset. Indicates that the entry through the reset
exception vector was due to a Soft Reset.

0: Not Soft Reset (NMI or Hard Reset)
1: Soft Reset

R/W 1 for Soft Reset;
0 otherwise

NMI 19

Non-maskable Interrupt. Indicates that the entry through
the reset exception vector was due to an NMI.

0: Not NMI (Soft or Hard reset)
1: NMI

R/W 1 for NMI;
0 otherwise

IM
(IM7..IM0) 15:8

Interrupt Mask. Used to individually mask theInterrupt
Pending(IP) bits in theCauseregister, in order to disable
the corresponding interrupt exception.

0: Interrupt request disabled
1: Interrupt request enabled

R/W Undefined

KX 7

Kernel Extension. If set, enables 64-bit addressing for
memory references to Kernel address space. (64-bit
registers and operations are always enabled in Kernel
Mode.)

0: 64-bit addressing in Kernel address space disabled
1: 64-bit addressing in Kernel address space enabled

R/Wa Undefined

SX 6

Supervisor Extension. If set, enables 64-bit addressing for
memory references to Supervisor address space.(64-bit
registers and operations are always enabled in Supervisor
Mode.)

0: 64-bit addressing in Supervisor address space disabled
1: 64-bit addressing in Supervisor address space enabled

R/Wa Undefined

Table 6-16 Status Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 115

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers
UX 5

User Extension. If set, enables 64-bit addressing for
memory references to user address space and enables
64-bit registers and operations in User Mode.

0: 64-bit addressing in User address space disabled
1: 64-bit addressing in User address space enabled

R/Wa Undefined

KSU 4:3

The encoding of this field denotes the base operating mode
of the processor as defined above. The encoding of this field
is:

002: Base mode is Kernel Mode
012: Base mode is Supervisor Mode
102: Base mode is User Mode
112: Reserved. The operation of the processor is
UNDEFINED if this value is written to the KSU field

R/W Undefined

ERL 2

Error Level. Set by the processor when a Reset, Soft Reset,
NMI, or Cache Error exception is taken.

0: Non-error level
1: Error level

WhenERL is set:

• The processor is running in Kernel Mode (provided that
Debug[DM] = 0).

• Interrupts are disabled.

• The ERET instruction will use the return address in
ErrorEPC instead ofEPC.

• kuseg is treated as an unmapped and uncached region,
which allows main memory to be accessed in the
presence of cache errors.

R/W 1

EXL 1

Exception Level. Set by the processor when any exception
other than Reset, Soft Reset, NMI or Cache Error exception
is taken.

0: Non-exception level
1: Exception level

WhenEXL is set:

• The processor is running in Kernel Mode (provided that
Debug[DM] = 0).

• Interrupts are disabled.

• TLB Refill exceptions will use the general exception
vector instead of the TLB Refill vectors.

• EPC will not be updated if another exception is taken.

R/W Undefined

IE 0

Interrupt Enable. Functions as the master enable for
software and hardware interrupts.

0: Interrupts disabled
1: Interrupts enabled

R/W Undefined

0 26, 24,
18:16 These bits must be written as zero; returns zero on read. 0 0

a. This bit it read-only and hardwired to 0 when the MMU is FMT- based.

Table 6-16 Status Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bits
116 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.12 Cause Register (CP0 Register 13, Select 0)

ntrols
6.12 Cause Register (CP0 Register 13, Select 0)

TheCauseregister contains information about the most recent processor exception. It also contains a field which co
software interrupt requests, and a bit that selects the exception vector used by the exception handler.

Figure 6-13 shows the format of theCause register;Table 6-17 describes theCause register fields.

Figure 6-13 Cause Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BD 0 CE 0 IV WP 0 IP7:IP0 0 ExcCode 0

Table 6-17 Cause Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

BD 31

Branch Delay. Indicates whether the last exception
taken occurred in a branch delay slot.

0: Not in delay slot
1: In delay slot

R Undefined

CE 29:28

Coprocessor Exception. Contains the coprocessor unit
number referenced when a Coprocessor Unusable
exception is taken. This field is written by hardware on
every exception, but is undefined for all exceptions
except the Coprocessor Unusable exception.

R Undefined

IV 23

Interrupt Vector. Indicates whether an interrupt
exception uses the general exception vector or the
special interrupt vector.

0: Use the general exception vector (0x180)
1: Use the special interrupt vector (0x200)

R/W Undefined

WP 22

Watch Postponed. Indicates that a Watch exception
was deferred because StatusEXL or StatusERL was set
to a one when the Watch exception was detected.
When this bit is set to one, the Watch exception is
taken if StatusEXL and StatusERL are both zero; thus
software must clear this bit as part of the Watch
exception handler to prevent a Watch exception loop.

R/W Undefined

IP[7:2] 15:10

Interrupt Pending. Indicates an external interrupt is
pending.

15: Hardware interrupt 5a

14: Hardware interrupt 4
13: Hardware interrupt 3
12: Hardware interrupt 2
11: Hardware interrupt 1
10: Hardware interrupt 0

R Undefined

IP[1:0] 9:8

Interrupt Pending. Controls the request for software
interrupts.

9: Request software interrupt 1
8: Request software interrupt 0

R/W Undefined

ExcCode 6:2 Exception Code. Refer toTable 6-18. R Undefined
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 117

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers
0

30,
27:24,
21:16,
7, 1:0

Must be written as zero; returns zero on read. 0 0

a. Interrupt 5 may be used for the Timer interrupt, with external connection of theSI_TimerInt output to this input.

Table 6-18 Cause Register ExcCode Field

ExcCode Value Mnemonic Description

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address Error exception (load or instruction fetch)

5 AdES Address Error exception (store)

6 IBE Bus Error exception (instruction fetch)

7 DBE Bus Error exception (data reference for load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved Instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 - Reserved

15 FPE Floating-point exception

16-17 - Available for an attached COP2

18 C2E Coprocessor 2 exception

19-21 - Reserved

22 MDMX MDMX Unusable exception

23 WATCH Reference toWatchHi/WatchLo address

24 MCheck Machine Check exception

25-29 - Reserved

30 CacheErr Cache Error (Note that when there is a cache error in Debug Mode, this
ExcCode is not used for theCauseregister, but only for theDebugregister.)

25-31 - Reserved

Table 6-17 Cause Register Field Descriptions (Continued)

Fields Description Read/Write Reset State

Name Bits
118 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.13 Exception Program Counter (CP0 Register 14, Select 0)

mes
6.13 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC)is a read/write register that contains the address at which processing resu
after an exception has been serviced.

For synchronous (precise) exceptions,EPC contains either:

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction, when the instruction causing the
exception is in a branch delay slot (the Branch Delay bit in theCause register is set).

The processor does not write to theEPC register when theEXL bit in theStatus register is set to 1.

Figure 6-14 shows the format of theEPC register;Table 6-19 describes theEPC register fields.

Figure 6-14 EPC Register

6.14 Processor Identification (CP0 Register 15, Select 0)

TheProcessor Identification (PRId) register is a 32-bit, read-only register containing information that identifies the
manufacturer, manufacturer options, processor identification, and revision level of the processor.Figure 6-15shows the
format of thePRId register;Table 6-20 describes thePRId register fields.

Figure 6-15 PRId Register

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

EPC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EPC

Table 6-19 EPC Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

EPC 63:0 Exception Program Counter R/W Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Company Options CompanyID ProcessorID Revision

Table 6-20 PRId Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

Company
Options 31:24

Available to the CPU core user for company-dependent
options. The value in this field is a direct input to the
CPU core signalSI_PRIdOpt[7:0]. The default value
of this field is zero.

R Externally set
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 119

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers

of the
6.15 Configuration Register (CP0 Register 16, Select 0)

TheConfigregister specifies various configuration options and capabilities of the 5K microprocessor core. Most
fields in theConfig register are initialized by hardware during the Reset exception or have constant values.

Figure 6-16 shows the format of theConfig register;Table 6-21 describes theConfig register fields.

Figure 6-16 Config Register

Company
ID 23:16

Identifies the company that designed or manufactured
the processor. The value 1 in this field indicates that the
processor is designed by MIPS Technologies, Inc.

R 1

Processor
ID 15:8

Identifies the type of processor. This field allows
software to distinguish between the various types of
MIPS processors. For the 5K microprocessor core, this
field contain the value 129 (binary 1000 0001).

R 129

Revision 7:0

Specifies the revision number of the processor. This
field allows software to distinguish between different
revisions of the same processor type. A value of 1 in
this field indicates the first revision of the processor.

R 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M K23 KU 0 SB ISD 0 0 DID BM BE AT AR MT 0 K0

Table 6-21 Config Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

M 31 This bit is set to 1 to indicate that theConfig1register is
implemented. R 1

K23 30:28
Specifies the kseg2 and kseg3 cache coherency
algorithm to be used with an FMT-based MMU. Refer to
Table 6-6 for the encoding of this field.

R/W Undefined

KU 27:25
Specifies useg/kuseg cache coherency algorithm to be
used with an FMT-based MMU. Refer toTable 6-6 for
the encoding of this field.

R/W Undefined

SB 21

Indicates whether SimpleBE bus mode is enabled. Set
via the SI_SimpleBE[0] input pin:

0: No reserved byte enables on the EC interface

1: Only simple byte enables allowed on the EC interface

R Externally set

ISD 20

Instruction Scheduling Disable. Disable the instruction
scheduling feature of the processor.

0: Instruction Scheduling enabled
1: Instruction Scheduling disabled

R/W 0

Table 6-20 PRId Register Field Descriptions (Continued)

Fields Description Read/Write Reset State

Name Bits
120 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.16 Configuration Register 1 (CP0 Register 16, Select 1)

or

way, the
6.16 Configuration Register 1 (CP0 Register 16, Select 1)

TheConfig1 register is an adjunct to theConfig register and is used to encode information about additional process
capabilities.

The I-cache and D-cache configuration parameters in this register include encoding of the number of sets per
line size, and the associativity. The cache size is equal to:

• Associativity * Line Size * Sets Per Way

If the line size is zero, no cache is implemented.

Figure 6-17 shows the format of theConfig1 register;Table 6-22 describes theConfig1 register fields.

DID 17

Dual Issue Disable

0: Dual issue enabled
1: Dual issue disabled

R/W 0

BM 16

Burst Mode. Indicates bus burst ordering.

0: Incremental
1: Interleaved

R Externally set

BE 15

Indicates the current endian byte-ordering convention.

0: Little endian
1: Big endian

R Externally set

AT 14:13

Architecture Type. Indicates the architecture type
implemented by the processor.

1: MIPS64 with 32-bit address only
2: MIPS64 with 32/64-bit addresses

The value 1 is used when the MMU type is FMT and the
value 2 is used when the MMU type is TLB.

R Build optionb

AR 12:10

Architecture Revision. Specifies the architecture
revision level.

0: Revision 1

R 0

MT 9:7

MMU Type. Specifies the type of MMU implemented.

1: Standard TLB
3: Standard FMT

R Build optiona

K0 2:0 Specifies the kseg0 cache coherency algorithm. Refer to
Table 6-6 on page 107 for the encoding of this field. R/W 2 (uncached)

0
24:22,
19:18,

6:3
Must be written as zero; returns zero on read. 0 0

a. The setting of this field is determined when the 5K core is built with either a TLB or an FMT-based MMU.

Table 6-21 Config Register Field Descriptions (Continued)

Fields Description Read/Write Reset State

Name Bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 121

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers
Figure 6-17 Config1 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MMU Size - 1 IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 6-22 Config1 Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

MMU
Size - 1 30:25

Number of entries in the TLB minus one. This field can have
the following values:

0: Value used when the MMU is not TLB-based
15: 16-entry TLB MMU (dual entries)
31: 32-entry TLB MMU (dual entries)
47: 48-entry TLB MMU (dual entries)

All other values are reserved.

R Build optiona

IS 24:22

I-cache sets per way.

1: 128 sets
2: 256 sets
3: 512 sets

All other values are reserved.

R Presetb

IL 21:19

I-cache line size.

0: No I-cache present
4: 32 bytes

All other values are reserved.

R Presetc

IA 18:16

I-cache set associativity.

0: Direct mapped
1: 2-way
2: 3-way
3: 4-way

All other values are reserved.

R Presetc

DS 15:13

D-cache sets per way.

1: 128 sets
2: 256 sets
3: 512 sets

All other values are reserved.

R Presetc

DL 12:10

D-cache line size.

0: No D-cache present
4: 32 bytes

All other values are reserved.

R Presetc

DA 9:7

D-cache set associativity.

0: Direct mapped
1: 2-way
2: 3-way
3: 4-way

All other values are reserved.

R Presetc
122 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.17 WatchLo Register (CP0 Register 18)

atch
duplicate

re) to
6.17 WatchLo Register (CP0 Register 18)

TheWatchLo andWatchHi registers together provide the interface to a watchpoint debug facility that initiates a W
exception if an instruction or data access matches the address specified in the registers. As such, these registers
some functions of the EJTAG debug solution.

Watch exceptions are taken only if theStatusregister’sEXLandERLbits are both zero. If either bit is a one, theCause
register’sWP bit is set, and the Watch exception is deferred until bothEXL andERL bits are zero.

The CPU provides oneWatchLo/WatchHi register pair, and ignores the select field of the MTC0/MFC0 and
DMTC0/DMFC0 instructions for these registers. Software may determine that one pair ofWatchLo andWatchHi
registers are implemented via theWR bit of theConfig1 register and theM bit in theWatchHi register.

TheWatchLo register specifies the virtual base address and the type of reference (instruction fetch, load, or sto
match.Figure 6-18 shows the format of theWatchLo register;Table 6-23 describes theWatchLo register fields.

C2 6

Coprocessor 2 implemented.

0: No coprocessor 2 implemented.
1: Coprocessor 2 implemented

R Presetc

MD 5

MDMX ASE implemented.

0: No MDMX ASE implemented
1: MDMX ASE implemented

R Presetc

PC 4

Performance Counter. This bit is 1 to indicate that the
processor implementsPerformance Counter registers.

1: At least one performance counter register implemented

R 1

WR 3
Watch registers implemented.

1: At least one watch register implemented
R 1

CA 2
Code compression (MIPS16™ ASE) implemented.

0: No code compression
R 0

EP 1
EJTAG implemented.

1: EJTAG implemented
R 1

FP 0

FPU implemented.

0: No FPU
1: FPU implemented

R Presetc

0 31, 6:5 Must be written as zero; returns zero on read. 0 0

a. The setting of this field is determined when the CPU core is built with either a TLB- or an FMT-based MMU.

b. The reset value of this field reflects the implemented hardware.

Table 6-22 Config1 Register Field Descriptions (Continued)

Fields Description Read/Write Reset State

Name Bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 123

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers

es
al
Figure 6-18 WatchLo Register

6.18 WatchHi Register (CP0 Register 19)

TheWatchHiregister contains information that qualifies the virtual address specified in theWatchLoregister, including
anASID, aG (Global) bit, and an optional address mask. If theG bit is one, any virtual address reference that match
the specified address will cause a Watch exception. If theG bit is zero Watch exception is caused only by those virtu
address references for which the ASID value in theWatchHi register matches the ASID value in theEntryHi register.
The optionalMask field provides address masking that qualifies the address specified inWatchLo.

Figure 6-19 shows the format of theWatchHi register;Table 6-24 describes theWatchHi register fields.

Figure 6-19 WatchHi Register

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

VAddr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VAddr I R W

Table 6-23 WatchLo Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

VAddr 63:3

Virtual Address. This field specifies the virtual address
to match. Note that this is a doubleword address,
because bits 2:0 are used to control the type of match.
Bits 2:0 are ignored for the watchpoint address
comparison.

R/W Undefined

I 2 Instruction. If this bit is one, Watch exceptions are
enabled for instruction fetches that match the address. R/W 0

R 1 Read. If this bit is one, Watch exceptions are enabled for
loads that match the address. R/W 0

W 0 Write. If this bit is one, Watch exceptions are enabled for
stores that match the address. R/W 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M G 0 ASID 0 MASK 0

Table 6-24 WatchHi Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

M 31 This bit is set to zero to indicate that only one pair of
WatchHi/WatchLo registers are implemented. R 0
124 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.19 XContext Register (CP0 Register 20, Select 0)

n
ion, the

r

7-bit
a single
s the
riate

ss
6.19 XContext Register (CP0 Register 20, Select 0)

Like theContext register, theXContext register contains a pointer to an entry in the page table entry (PTE) array, a
operating system data structure that stores virtual-to-physical address translations. When there is a TLB except
operating system software loads the TLB with the missing translation from the PTE array. TheXContextregister
provides a different view of the information provided in theBadVAddrregister, and puts it in a form more directly usable
by TLB exception handlers. TheXContextregister is for use with the XTLB refill handler, which loads TLB entries fo
references to a 64-bit address space. The operating system sets this register’sPTEBase field, as needed. Normally, the
operating system uses the XContextregister to address the current page map, which resides in the kernel-mapped
segment kseg3.

On a 64-bit TLB miss, theRfield contains bits 63:62 of the virtual address, which select the mapped region. The 2
BadVPN2 field contains bits 39:13 of the virtual address that caused the TLB miss; bit 12 is excluded because
TLB entry maps to an even-odd page pair. For a 4-Kbyte page size, this format may be used directly to addres
pair-table of 8-byte PTEs. For other page and PTE sizes, shifting and masking this value produces the approp
address.

TheR andBadVPN2 fields of theXContext register are updated on TLB exceptions and undefined following Addre
Error exceptions.

Figure 6-20 shows the format of theXContextregister;Figure 6-20 describes theXContext register fields.

Figure 6-20 XContext Register Format

G 30

Global. If this bit is one, any address that matches the
address specified in theWatchLo register will cause a
Watch exception. If this bit is zero, theASIDfield of the
WatchHi register must match theASID field of the
EntryHi register to cause a Watch exception.

R/W Undefined

ASID 23:16
ASID. Specifies the ASID value required to match the
ASID value in theEntryHi register, when theG bit in
theWatchHi register is set to zero.

R/W Undefined

Mask 11:3

Optional bit mask that qualifies the address in the
WatchLo register. Any bit in this field that is set
prevents the corresponding address bit from
participating in the address match.

R/W Undefined

0
29:24,
15:12,

2:0
Must be written as zero; returns zero on read. 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

PTEBase R

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BadVPN2 0

Table 6-24 WatchHi Register Field Descriptions (Continued)

Fields Description Read/Write Reset State

Name Bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 125

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers

Mode.
les the

in
6.20 Debug Register (CP0 Register 23, Select 0)

TheDebugregister describes the cause of the most recent debug exception or exception that occurred in Debug
It also provides status information for various machine resources available in Debug Mode. In addition, it enab
single step exception (used only in Non-Debug Mode).

When this register is read in Non-Debug Mode, only theDM bit andEJTAGverfield are valid; the value of all other bits
and fields areUNPREDICTABLE . In Non-Debug Mode, writes to the Debug register are ignored.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in Debug Mode:

• DSS, DBp, DDBL, DDBS, DIB, DINT andDDBLImpr are updated on both debug exceptions and on exceptions
Debug Mode.

• DExcCode is updated on exceptions in Debug Mode, and is undefined after a debug exception.

• Halt andDoze are updated on a debug exception, and are undefined after an exception in Debug Mode.

• DBD is updated on both debug exceptions and on exceptions in Debug Mode.

Figure 6-21 shows the format of theDebug register;Table 6-26 describes the register fields.

Figure 6-21 Debug Register

Table 6-25 XContext Register Fields

Field Description Read/Write Reset
State

Name Bits

PTEBase 63:33

The Page Table Entry Base. This field is normally written
with a value that allows the operating system to use the
XContextregister as a pointer into the current PTE array
in memory.

R/W Undefined

R 32:31

Region. Contains bits 63:62 of the virtual address in the
BadVAddr register, which select the address space as
follows:

002 = xuseg
012 = xsseg
102 = Reserved
112 = xkseg

R Undefined

BadVPN2 30:4 This field contains bits 39:13 of the virtual address in the
BadVAddr register. R Undefined

0 3:0 Must be written as zeroes; returns zeroes when read. R 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DBD DM NoDCR LSNM Doze Halt CountDM 0 MCheckP CacheEP DBusEP IEX1 0 DDBLimpr EJTAGver

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EJTAGver DExcCode 0 SSt 0 DINT DIB DDBS DDBL DBp DSS
126 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.20 Debug Register (CP0 Register 23, Select 0)
Table 6-26 Debug Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

DBD 31

Debug Branch Delay. Indicates whether the last
debug exception or exception in Debug Mode
occurred in a branch delay slot.

0: Exception not in delay slot
1: Exception in delay slot

R Undefined

DM 30

Debug Mode. Indicates that the processor is
operating in Debug Mode.

0: Processor is operating in Non-Debug Mode
1: Processor is operating in Debug Mode

R 0

NoDCR 29
Indicates that the dseg memory segment is present.

0: dseg is present
R 0

LSNM 28

Load Store Normal Memory. Controls load/store
accesses to dseg and non-dseg memory.

0: Access references dseg
1: Access references non-dseg memory

R/W 0

Doze 27

Indicates if the processor was in low-power mode
when a debug exception occurred.

0: Processor not in low-power mode
1: Processor in low-power mode

R Undefined

Halt 26

Indicates that the internal system bus clock was
stopped when the debug exception occurred.

0: Internal system bus clock running
1: Internal system bus clock stopped

R Undefined

CountDM 25 Count Debug Mode. This bit is set to 1 to indicate
that theCount register always counts. R 1

MCheckP 23

Machine Check Exception Pending. Set when a
Machine Check exception is pending, either because
a Machine Check exception has been signaled by
hardware, or software has set this bit to 1. This bit is
cleared when the processor takes the Machine Check
exception. Note that if software writes a 1 to this bit,
the processor will take a Machine Check exception as
soon as the exception is no longer masked by higher
priority exceptions or byDebugIEXI.

This bit allows Machine Check exceptions caused by
Non-Debug Mode software, but first signaled when
the processor is in Debug Mode, to be deferred until
after the execution of the DERET instruction.

R/W1 0
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 127

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers
CacheEP 22

Cache Error Exception Pending. Set when a Cache
Error exception is pending, either because a Cache
Error exception has been signaled by hardware, or
because software has set this bit to 1. This bit is
cleared when the processor takes the Cache Error
exception. Note that if software writes a 1 to this bit,
the processor will take a Cache Error exception as
soon as the exception is no longer masked by higher
priority exceptions or byDebugIEXI.

This bit allows Cache Error exceptions caused by
Non-Debug Mode software, but first signaled when
the processor is in Debug Mode, to be deferred until
after the execution of the DERET instruction.

R/W1 0

DBusEP 21

Data Bus Error Exception Pending. Set when a Data
Bus Error exception is pending, either because a Data
Bus Error exception has been signaled by hardware,
or because software has set this bit to 1. This bit is
cleared when the processor takes the Data Bus Error
exception. Note that if software writes a 1 to this bit,
the processor will take a Data Bus Error exception as
soon as the exception is no longer masked by higher
priority exceptions or byDebugIEXI.

This bit allow Data Bus Error exceptions caused by
Non-Debug Mode software, but first signaled when
the processor is in Debug Mode, to be deferred until
after the execution of the DERET instruction.

In Debug Mode, a Data Bus Error exception applies
to a Debug Mode Data Bus Error exception.

R/W1 0

IEXI 20

Imprecise Error Exception Inhibit. Set when the
processor takes a debug exception, or when Debug
Mode is re-entered. This bit is cleared by execution
of the DERET instruction and modifiable by
software. WhenIEXI is set, the Bus Error, Cache
Error, and Machine Check exceptions are deferred
until this bit is cleared.

R/W 0

DDBLImpr 18

Debug Data Break Imprecise. Indicates that an
Imprecise Debug Data Break was the cause of the
debug exception, or that an Imprecise Debug Data
Break was signaled after another debug exception
occurred. This bit is cleared on exception in Debug
Mode.

0: No imprecise data break indication, or exception in
 Debug Mode occurred
1: Imprecise data break indication

R Undefined

EJTAGver 17:15

Indicates the EJTAG version implemented:
0: Version 1 and 2.0
1: Version 2.5
2: Version 2.6
3-7: Reserved

R 2

DExcCode 14:10

Debug Exception Code. Indicates the cause of the
latest exception in Debug Mode. This field is encoded
as theExcCodefield in theCauseregister for use by
software in servicing non-debug exceptions that
occur in Debug Mode.

Value is undefined after a debug exception.

R Undefined

Table 6-26 Debug Register Field Descriptions (Continued)

Fields Description Read/Write Reset State

Name Bits
128 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.21 Debug Exception Program Counter Register (CP0 Register 24, Select 0)

ich

g Mode.
6.21 Debug Exception Program Counter Register (CP0 Register 24, Select 0)

TheDebug Exception Program Counter(DEPC) register is a 64-bit read/write register that contains the address at wh
execution resumes after servicing a debug exception or an exception in Debug Mode.

This register is updated by hardware when a debug exception occurs, and when any exception occurs in Debu
This register contains two possible values:

SSt 8

Debug Single Step. Enables Debug single step
exception.

0: Single step not enabled
1: Single step enabled

R/W 0

DINT 5

Debug Interrupt. Indicates that a Debug Interrupt
exception occurred. This bit is cleared on exception
in Debug Mode.

0: No Debug Interrupt exception
1: Debug Interrupt exception

R Undefined

DIB 4

Debug Instruction Break. Indicates that a Debug
Instruction Break exception occurred. This bit is
cleared on exception in Debug Mode.

0: No Debug Instruction Break exception
1: Debug Instruction Break exception

R Undefined

DDBS 3

Debug Data Break Store. Indicates that a Debug Data
Break exception occurred on a store. This bit is
cleared on exception in Debug Mode.

0: No Debug Data Break exception on a store
1: Debug Date Break exception on a store

R Undefined

DDBL 2

Debug Data Break Load. Indicates that a Debug Data
Break exception occurred on a load. This bit is
cleared on exception in Debug Mode.

0: No Debug Data Break exception on a load
1: Debug Data Break exception on a load

R Undefined

DBp 1

Debug Breakpoint. Indicates that a debug software
Breakpoint exception occurred. This bit is cleared on
exception in Debug Mode.

0: No Debug software Breakpoint exception
1: Debug software Breakpoint exception

R Undefined

DSS 0

Debug Single Step. Indicates that a Debug Single
step exception occurred. This bit is cleared on
exception in Debug Mode.

0: No Debug Single Step exception
1: Debug Single Step exception

R Undefined

0 24, 19,
7:6 Must be written as zero; returns zero on read. 0 0

Table 6-26 Debug Register Field Descriptions (Continued)

Fields Description Read/Write Reset State

Name Bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 129

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers

Debug

ing the

o CP0
y the

 in its

ffected
are by
1. The virtual address of the instruction that was the direct cause of the debug exception or the exception in
Mode or,

2. The virtual address of the immediately preceding branch or jump instruction, when the instruction caus
exception is in a branch delay slot, and theDebug Branch Delay (BDB) bit in theDebug register is set.

Figure 6-22 shows the format of theDEPC register;Table 6-27 describes theDEPC register fields.

Figure 6-22 DEPC Register

6.22 Performance Counter Register (CP0 Register 25, select 0-3)

The 5K processor defines two performance counters and two associated control registers, which are mapped t
register 25. The select field of the MTC0/MFC0 instructions are used to select the specific register accessed b
instruction, as shown inTable 6-28.

Each counter is a 32-bit read/write register and is incremented by one each time the countable event, specified
associated control register, occurs. Each counter can independently count one type of event at a time.

Bit 31 of each of the two counters are ANDed with an interrupt enable bit,IE, of their respective control register, and
then ORed together with hardware interrupt 5 input to generate an interrupt on counter overflow. Counting is not a
by the interrupt indication. This output is cleared when the counter wraps to zero, and may be cleared in softw
writing a value with bit 31 = 0 to thePerformance Counter Count registers.

Figure 6-23 shows the format of thePerformance Counter Control register;Table 6-29 describes thePerformance
Counter Control register fields.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

DEPC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DEPC

Table 6-27 DEPC Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

DEPC 63:0 Debug Exception Program Counter R/W Undefined

Table 6-28 Performance Counter Register Selects

Select[1:0] Register

0 Register 0 Control

1 Register 0 Count

2 Register 1 Control

3 Register 1 Count
130 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.22 Performance Counter Register (CP0 Register 25, select 0-3)
Figure 6-23 Performance Counter Control Register

Table 6-30 describes the events countable with the two performance counters. The operation of a counter is
UNPREDICTABLE for events which are specified as Reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 0 Event IE U S K EXL

Table 6-29 Performance Counter Control Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

M 31
If this bit is one, another pair ofPerformance Control
andCounter registers is implemented at a MTC0 or
MFC0 select field value of ‘n+2’ and ‘n+3’.

R
1 for performance counter 0

0 for performance counter 1

Event 8:5 Counter event enabled for this counter. Possible events
are listed inTable 6-30. R/W Undefined

IE 4
Counter Interrupt Enable. This bit masks bit 31 of the
associated count register from the interrupt exception
request output.

R/W 0

U 3 Count in User Mode. When this bit is set, the specified
event is counted in User Mode. R/W Undefined

S 2 Count in Supervisor Mode. When this bit is set, the
specified event is counted in Supervisor Mode. R/W Undefined

K 1 Count in Kernel Mode. When this bit is set, count the
event in Kernel Mode whenEXL andERL both are 0. R/W Undefined

EXL 0 Count whenEXL. When this bit is set, count the event
whenEXL = 1 andERL = 0. R/W Undefined

0 30:9, 2 Must be written as zeroes; returns zeroes when read. 0 0

Table 6-30 Performance Counter Count Register Field Descriptions

Event Number Counter 0 Counter 1

0 Cycles Cycles

1 Instructions fetched Instructions executed

2 Load/pref(x)/sync/cache-ops executed Load/pref(x)/sync/cache-ops executed

3 Stores (including conditional stores) executed Stores (including conditional stores) executed

4 Conditional stores executed Conditional stores executed

5 Failed conditional stores Floating-point instructions executed

6 Branches executed Data cache line evicted

7 ITLB miss TLB miss exceptions

8 DTLB miss Branch mispredicted

9 Instruction cache miss Data cache miss
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 131

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers

evious

e inte-
n has

ALL,
garded
data has

e com-

nsidered
d data

ecause
Event 0, counter 0 & 1: Cycles

The counter is incremented by one on each clock cycle.

Event 1, counter 0: Instructions fetched

The counter is incremented by the number of instructions (0, 1, or 2) fetched by the instruction buffer in the pr
cycle.

Event 1, counter 1: Instructions executed

The counter is incremented by the number of instructions (0, 1 or 2) which have completed their execution in th
ger unit or the floating-point unit in the previous cycle. With respect to the performance counters, an instructio
completed its execution if it has passed its M stage without being killed or if the instruction was a SYSC
BREAK, SDBBP, or trap instruction caused the corresponding exception. Note that a load instruction is thus re
as executed if it has completed the M stage, even though the load may have been scheduled, and therefore its
not yet been written to a GPR. MDU and arithmetic coprocessor instructions are also counted when they hav
pleted the M stage, regardless of how many additional cycles they will require to complete execution.

Event 2, counter 0 &1: Load/pref(x)/sync/cache-ops executed

The counter is incremented by one each time a load, pref(x), sync, or cache instruction has been executed.

Event 3, counter 0 & 1: Stores (including conditional stores) executed

The counter is incremented by one each time a store instruction has been executed. A store instruction is co
executed when it has completed its M stage without being killed, even when it has not yet written the uncache
to external memory. Note that a store conditional is considered executed even if it fails to perform the store b
the LL bit has been cleared.

Event 4, counter 0 & 1: Conditional stores executed

Similar to event 3, counter 1, but only affected by store conditional instructions.

Event 5, counter 0: Failed conditional stores

The counter is incremented by one each time a store conditional instruction fails the store.

Event 5, counter 1: Floating-point instructions executed

The counter is incremented by one each time a floating-point instruction has been executed.

Event 6, counter 0: Branches executed

The counter is incremented by one each time a conditional branch instruction has been executed.

10 Instruction scheduled Instruction stall in M stage due to scheduling
conflicts

11 Reserved Reserved

12 Reserved Reserved

13 Reserved Reserved

14 Dual issued instructions executed Reserved

15 Instructions executed COP2 instructions executed

Table 6-30 Performance Counter Count Register Field Descriptions

Event Number Counter 0 Counter 1
132 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.22 Performance Counter Register (CP0 Register 25, select 0-3)

l due to

ntil
s.
Event 6, counter 1: Data cache line evicted

The counter is incremented by one each time a line is evicted from the data cache.

Event 7, counter 0: ITLB miss

The counter is incremented by one each time there is a miss in the ITLB.

Event 7, counter 1: TLB miss exceptions

The counter is incremented by one each time a TLB miss exception is taken.

Event 8, counter 0: DTLB miss

The counter is incremented by one each time there is a miss in the DTLB.

Event 8, counter 1: Branch mispredicted

The counter is incremented by one each time a conditional branch is mispredicted.

Event 9, counter 0: Instruction cache miss

The counter is incremented by one each time there is a miss in the instruction cache.

Event 9, counter 1: Data cache miss

The counter is incremented by one each time there is a miss in the data cache.

Event 10, counter 0: Instructions scheduled

The counter is incremented by one each time an instruction has been scheduled.

Event 10, counter 1: Instruction stall in M stage due to scheduling conflicts

The counter is incremented by one for each clock cycle when an instruction causes an M stage pipeline stal
scheduling conflicts.

Event 14, counter 0: Dual issued instructions executed

The counter is incremented by two each time an instruction pair that was dual issued has been executed. SeeSection ,
"Event 1, counter 1: Instructions executed" for a description of when an instruction is considered executed.

Event 15, counter 0: Instructions executed

Identical to event 1, counter 1.

Event 15, counter 1: COP2 instructions executed

The counter is incremented by one each time a COP2 instruction has been executed.

Figure 6-24shows the format of thePerformance Counter Countregister;Table 6-31describes thePerformance Counter
Count register fields.

The performance counter resets to a low-power state, in which none of the counters will start counting events u
software has enabled event counting, using an MTC0 instruction to the Performance Counter Control Register

Figure 6-24 Performance Counter Count Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Counter
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 133

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers

 the

ays

 Tag
r 14

or the

es are
6.23 ErrCtl Register (CP0 Register 26, Select 0)

TheErrCtl register controls parity protection of data and instruction caches and provides for software testing of
way-selection RAM.

Parity protection can be enabled or disabled using thePE bit. When parity is enabled, thePO bit controls overwrite of
calculated parity for the CACHE instructions Indexed Store operation. A CACHE Index Load Tag operation will alw
cause this register to be updated with the parity bits read, along with the update of theDataLoandDataHi register when
parity is enabled. When parity is disabled, the contents of theP field isUNPREDICTABLE.

The way- selection RAM test mode is enabled by setting theWSTbit. This mode is intended for software testing of the
way-selection RAM and data RAM. It modifies the functionality of the CACHE Index Load Tag and Index Store
operations so that they modify the way-selection RAM but do not modify the TAG RAMs. In this mode, the lowe
bits of thePTagLofield of theTagLoregister are used as the source and destination for load and store operations f
way-selection RAM. Refer toFigure 8-2 for the layout of the way-selection RAM. The WS bits, Dirty bits and Dirty
Parity bits (optional) are accessible throughPTagLo[12:7], PTagLo[7:4],and PTagLo[3:0],respectively. In addition,
when the WST bit is set, the CACHE Index Store Data can be used for testing the data RAM. When theWSTbit is set,
the CACHE Index Store Tag is used to the write to the way-selection RAM rather than the tag RAM and these writ
performed with parity overwrite, disregarding the setting of thePO bit.

Figure 6-25 shows the format of theErrCtl register;Table 6-32 describes theErrCtl register fields.

Figure 6-25 ErrCtl Register

Table 6-31 Performance Counter Count Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

Counter 31:0 Counter R/W Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PE PO WST 0 P

Table 6-32 ErrCtl Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

PE 31

Parity Enable. This bit enables or disables the cache
parity protection.

0: Parity disabled
1: Parity enabled

R/W 0

PO 30

Parity Overwrite. If set, the contents of theP field
overwrites calculated parity when data is written to the
cache for the CACHE instructions indexed operations.

0: Use calculated parity
1: Use bits in P field for parity

R/W 0
134 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.24 CacheErr Register (CP0 Register 27, Select 0)

 is
6.24 CacheErr Register (CP0 Register 27, Select 0)

TheCacheErr register provides an interface with the cache error-detection logic. When a Cache Error exception
signaled, the fields of this register are set accordingly.

Figure 6-26 shows the format of theCacheErr register;Table 6-33 describes theCacheErr register fields.

Figure 6-26 CacheErr Register

WST 29

Way Selection Test. If set, way-selection RAM test
mode is enabled.

0: Test mode disabled
1: Test mode enabled

R/W 0

P 7:0
Parity bits read from or written to a cache data RAM.
P[0] is even parity for the least-significant byte of the
requested data.

R/W Undefined

0 28:8 Must be written as zeroes; returns zeroes when read. 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ER 0 ED ET 0 EB EF 0 EW 0 Index

Table 6-33 CacheErr Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

ER 31

Error Reference. Indicates the type of reference that
encountered an error.

0: Instruction
1: Data

R Undefined

ED 29

Error Data. Indicates a data RAM error.

0: No data RAM error detected
1: Data RAM error detected

R Undefined

ET 28

Error Tag. Indicates a tag RAM error.

0: No tag RAM error detected
1: Tag RAM error detected

R Undefined

EB 25

Error Both. Indicates that a data cache error occurred in
addition to an instruction cache error.

0: No additional data cache error
1: Additional data cache error

In the case of an additional data cache error, the
remainder of the bits in this register are set according to
the instruction cache error.

R Undefined

Table 6-32 ErrCtl Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 135

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers
EF 24

Error Fatal. Indicates that a fatal cache error has
occurred.

There are a few situations where software will not be
able to get all information about a cache error from the
CacheErr register. These situations are fatal because
software cannot determine which memory locations
have been affected by the error. To enable software to
detect these cases, theEF bit (bit 24) has been added to
theCacheErr register.

The following 6 cases are indicated as fatal cache errors
by theEF bit:

1. Dirty parity error in dirty victim (dirty bit cleared in
tag)

2. Tag parity error in dirty victim

3. Data parity error in dirty victim

4. WB store miss and EW error at the requested index

5. Dual/Triple errors from different transactions, e.g.
scheduled and non-scheduled load.

6. Multiple data cache errors detected before the first
instruction of the cache error handler is issued.

In addition to the above, simultaneous instruction and
data cache errors as indicated byCacheErr[EB] will
cause information about the data cache error to be
unavailable. However, that situation is not indicated by
CacheErr[EF].

R Undefined

EW 22

Error Way. Indicates a way selection RAM error.

0: No way selection RAM error detected
1: Way selection RAM error detected

R Undefined

Way 21:20
Way. Specifies the cache way in which the error was
detected. It is not valid if a Tag RAM error is detected
(ET=1).

R Undefined

Index 15:0

Index. Specifies the cache index of the double word in
which the error was detected. The way of the faulty
cache is written by hardware in theWayfield. Software
must combine theWay andIndex read in this register
with cache configuration information in theConfig1
register in order to obtain an index which can be used in
an indexed CACHE instruction to access the faulty
cache data or tag. Note thatIndex is aligned as a byte
index, so it does not need to be shifted by software
before it is used in an indexed CACHE instruction.Index
bits [4:3] are undefined upon tag RAM errors andIndex
bits above the MSB actually used for cache indexing
will also be undefined.

R Undefined

0 30, 27:26,
23, 21:16 Must be written as zeroes; returns zeroes when read. 0 0

Table 6-33 CacheErr Register Field Descriptions (Continued)

Fields Description Read/Write Reset State

Name Bits
136 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.25 TagLo Register (CP0 Register 28, Select 0)

nd data

es, and
6.25 TagLo Register (CP0 Register 28, Select 0)

TheTagLoregister is a read/write register that acts as the interface to the cache tag array for both the instruction a
caches. The Index Store Tag and Index Load Tag operations of the CACHE instruction use theTagLo register as the
source or destination of tag information, respectively.

Figure 6-27 shows the format of theTagLo register;Table 6-34 describes theTagLo register fields.

Figure 6-27 TagLo Register

6.26 DataLo Register (CP0 Register 28, Select 1)

TheDataLoandDataHi registers act as the interface to the cache data arrays in both the instruction and data cach
are intended for diagnostic operations only. The Index Load Tag operation of theCACHEinstruction reads the data field
of the indexed way of the cache data RAM. (For the layout of the cache data RAM, refer toFigure 8-2.)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PTagLo PState L 0 P

Table 6-34 TagLo Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

PTagLo 31:8

Specifies the upper address bits for the cache tag. Bit 31
of this field corresponds to bit 35 of the physical
address. Bit 8 corresponds to bit 12 of the physical
address.

R/W Undefined

PState 7:6

Specifies the state bits for the cache line. It can have the
following values:

0: Invalid line.
2: Valid clean line.
3: Valid dirty line.

The value 1 is not defined. If software sets the PState of
a cache line to 1, the operation of the cache will be
UNDEFINED.

R/W Undefined

L 5

Lock. Specifies the state of the lock bit for the cache
line.

0: The line is not locked.
1: The line is locked.

When locked, a cache line will not be replaced by the
cache subsystem. A cache line will be disabled (will
not generate a hit or be replaced by a refill) if it is
invalid and locked. It is only possible to obtain this state
by using the CACHE Index Store Tag instruction.

R/W Undefined

P 0

Parity. Specifies the parity bit for the cache tag. This bit
is updated with tag parity on CACHE instruction Index
Load Tag operations and used as tag parity on Index
Store Tag operations when thePO bit of theErrCtl
register is set. The Index Store Tag operation uses
computed parity when thePObit of theErrCtl register
is not set.

R/W Undefined

0 4:1 Must be written as zero; returns zero on read. 0 0
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 137

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers

m

e

TheDataLo register is a 64-bit register that holds all the data read from the data field. TheDataHi register holds the
upper 32 bits of the same data.

TheDataLo andDataHi registers can be both read and written by software. Special restrictions apply to a progra
wishing to write theDataLo andDataHi registers using the MTC0 instruction rather than the DMTC0 instruction.
Because theDataHi register provides access to the upper 32 bits of theDataLoregister, a program should always do a
MTC0 to theDataLoregister BEFORE a MTC0 to theDataHi register. No special restrictions apply to MFC0 from thes
registers. A program which accesses these registers using the DMTC0/DMFC0 instructions need only access theDataLo
register.

Figure 6-28 shows the format of theDataLo register;Table 6-35 describes theDataLo register fields.

Figure 6-28 DataLo Register

6.27 TagHi Register (CP0 Register 29, Select 0)

TheTagHi register is not used in the 5K processor core.

Figure 6-29 shows the format of theTagHi register;Table 6-36 describes theTagHi register fields.

Figure 6-29 TagHi Register

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

Table 6-35 DataLo Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

Data 63:0 Data read from the data array of the cache. R/W Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

Table 6-36 TagHi Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

0 31:0 Must be written as zero; returns zero on read. 0 0
138 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

6.28 DataHi Register (CP0 Register 29, Select 1)

r on

error.
6.28 DataHi Register (CP0 Register 29, Select 1)

This register is described in the sectionSection 6.26, "DataLo Register (CP0 Register 28, Select 1)" Figure 6-30shows
the format of theDataHi register;Table 6-37 describes theDataHi register fields.

Figure 6-30 DataHi Register

6.29 ErrorEPC (CP0 Register 30, Select 0)

TheErrorEPC register is a read/write register, similar to theEPC register, except thatErrorEPC is used for error
exceptions. All bits of theErrorEPC register are significant. This register is also used to store the program counte
Reset, Soft Reset, and non-maskable interrupt (NMI) exceptions.

TheErrorEPC register contains the virtual address at which instruction processing can resume after servicing an
The address can be any of the following:

• the virtual address of the instruction that caused the exception

• the virtual address of the immediately preceding branch or jump instruction, when the instruction causing the
exception is in a branch delay slot

• unrelated to the event that caused the exception

Unlike theEPC register, there is no corresponding branch delay slot indication for theErrorEPC register.

Figure 6-31 shows the format of theErrorEPC register;Table 6-38 describes theErrorEPC register fields.

Figure 6-31 ErrorEPC Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

Table 6-37 DataHi Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

Data 31:0 High-order data read from the cache data array. R/W Undefined

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ErrorEPC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ErrorEPC

Table 6-38 ErrorEPC Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

ErrorEPC 63:0 Error Exception Program Counter R/W Undefined
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 139

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 6 Coprocessor 0 Registers

e rest of
ception
ck for
6.30 Debug Exception SAVE (DESAVE) (CP0 register 31)

This register is used by the debug exception handler to save one of the GPRs, which can then be used to save th
the context in a pre-determined memory location, for example, in the EJTAG Probe. This register ensures that ex
handlers and other types of code can be safely debugged, even in situations where the existence of a valid sta
context saving cannot be assumed.

Figure 6-32 shows the format of theDESAVE register;Table 6-39 describes theDESAVE register fields.

Figure 6-32 DESAVE Register

Table 6-39 DESAVE Register Fields

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

DESAVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DESAVE

Fields Description Read/Write Reset State

Name Bits

DESAVE 63:0 Simple Read/Write register R/W Undefined
140 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

rforms

e
e space.
e into a
alization.

ritten.
in the

isible

in the Bus

cached,
Chapter 7

Hardware and Software Initialization

This chapter describes the hardware and software initialization of the MIPS64 5K processor core. The 5K core pe
only a minimal amount of hardware initialization and relies on software to fully initialize the device.

This chapter contains the following sections:

• Section 7.1, "Hardware-Initialized Processor State"

• Section 7.2, "Software-Initialized Processor State"

7.1 Hardware-Initialized Processor State

The 5K processor core, like most MIPS processors, is not fully initialized by Reset. Only a minimal subset of th
processor state is cleared, which is sufficient for the processor to begin executing in unmapped and uncached cod
All other processor states can then be initialized by software. Reset is asserted after power-up to bring the devic
known state. SoftReset can be used when the device is already up and running and does not need as much initi

7.1.1 Coprocessor 0 State

Much of the software-visible hardware initialization occurs inCoprocessor 0 (CP0). TheCP0 registers and their reset
values are documented in Chapter6. The initialization performed by Reset and SoftReset is documented inSection 5.2,
"Reset Exception" andSection 5.3, "Soft Reset Exception".

7.1.2 TLB Initialization

Each 5K TLB entry has a “hidden” state bit which is set by Reset/SoftReset and is cleared when the TLB entry is w
This bit disables matches and prevents “TLB Shutdown” conditions from being generated by the power-up values
TLB array (“TLB Shutdown” occurs when two or more TLB entries match on a single address). This bit is not v
to software.

7.1.3 Bus State Machines

When a Reset or SoftReset exception is taken, all pending bus transactions are aborted, and the state machines
Interface Unit are reset.

7.1.4 Static Configuration Inputs

All static configuration inputs (for example, defining endianess) should only be changed during Reset.

7.1.5 Fetch Address

Upon Reset/SoftReset, unless the EJTAGBOOT option is used, the fetch is directed to virtual address
0xFFFFFFFFBFC00000 (physical address 0x01FC00000). This address is in kseg1, which is unmapped and un
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 141

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 7 Hardware and Software Initialization

caches.

st of
 to it.

ever,
for

tries

he cache
he
itialized.
y code
so that the TLB and caches do not require hardware initialization. the EJTAGBOOT option is described inSection
10.5.1.3, "EJTAGBOOT and NORMALBOOT Instructions" on page 189.

7.2 Software-Initialized Processor State

This section describes the software required to initialize the COP0 registers, general-purpose registers, TLB, and

7.2.1 Coprocessor 0 Registers

Miscellaneous CP0 state needs to be initialized by software before exiting the boot code:

• The following fields in theStatus register must be initialized:CU, RE, MX (if a coprocessor implementing the
MDMX ASE is attached to the processor),PX, IM, KX, SX, UX, KSU, EXL, andIE.

• The following fields of theCause register must be initialized: IV, WP, and IP[1:0].

• If the MMU is built with the FMT option, the following fields of theConfigregister must be initialized:K23andKU.

• If timer interrupts are used, theCountandCompareregisters must be set to a known value. The write to theCompare
register will also clear any pending timer interrupts (and thus theCount register should be set before theCompare
register, to avoid any unexpected interrupts).

7.2.2 Register File

On power-up, the register file is in an unknown state with the exception of r0, which is always 0. Initializing the re
the register file is not required for proper operation—good code will generally not read a register before writing
However, the boot code can initialize the register file for added safety.

7.2.3 TLB

Because of the hidden bit indicating initialization, the 5K core does not require TLB initialization on Reset. How
this is an implementation-specific feature of the 5K core and cannot be relied upon when writing generic code
MIPS64 processors.

When initializing the TLB, care must be taken to avoid creating a “TLB Shutdown” condition, where two TLB en
match on a single address. To avoid this, unique virtual addresses must be written to each TLB entry.

7.2.4 Caches

On power-up, the cache tag and data arrays are in an unknown state and are not affected by Reset. Every tag in t
arrays must be initialized to the invalid state by using the CACHE instruction (typically, the Index Invalidate cac
operation) to clear it to zero. No cache line should be accessed by a cached access before it has been properly in
It is advantageous to initialize the instruction cache first, so that the initialization of the data cache can be done b
executing from the cache.
142 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

contains

, each up
ame time.
ccur in

, using
aming
ermits
hanced
hen a

ers is

et
e two

ations

alysis,
 of code,
Chapter 8

Cache Organization and Operation

This chapter describes the organization and operation of the cache subsystem in the 5K microprocessor core. It
the following sections.

• Section 8.1, "Introduction"

• Section 8.2, "Cache Organization"

• Section 8.3, "Cache Write Policies"

• Section 8.4, "Cached Loads and Fetches"

• Section 8.5, "Uncached Loads and Fetches"

• Section 8.6, "Way Selection Algorithm"

• Section 8.7, "Write Buffer"

• Section 8.8, "Read Buffer"

• Section 8.9, "Transaction Priority"

• Section 8.10, "CACHE Instruction"

• Section 8.11, "PREF and PREFX Instructions"

• Section 8.12, "Error Handling"

8.1 Introduction

The 5K microprocessor core supports two caches—an instruction cache (I-cache) and a data cache (D-cache)
to 64Kbytes in size. The use of separate caches allows instruction fetches and data accesses to occur at the s
The caches are virtually indexed and physically tagged, allowing the virtual-to-physical address translation to o
parallel with the cache access, rather than having to wait for the physical address translation to complete.

Cache refills are performed using a four-entry read buffer that performs four doubleword burst reads from memory
incremental or sub-block refill ordering. While refills are in progress, the caches can continue processing hits. Stre
is also supported, in which instructions and data are forwarded during cache refills. In addition, the read buffer p
data cache-refills to proceed while a cache line is being written back to memory. Cache performance is further en
by special way-selection (WS) logic that implements a least-recently used (LRU) algorithm for way selection w
cache line is replaced.

To optimize performance, there is one read buffer and two, four-doubleword write buffers. One of the write buff
used for writing back dirty cache lines to memory (calledevictions), and the other is used for uncached stores,
write-through cached stores, and for merging and gathering data for high-speed burst writes to memory.

Many cache characteristics can be configured by the user, including cache way size (4, 8, or 16 Kbytes) and s
associativity (direct-mapped, 2-way, 3-way, or 4-way set associative). These parameters are independent for th
caches. The 5K supports a variety of different cache configurations (size, associativity, parity) including configur
without caches.

The 5K supports special instructions (CACHE, PREF, and PREFX) which can be used for testing, performance an
and code optimization. For 5K-based systems that require guaranteed deterministic behavior of certain pieces
cache lines can be locked using the CACHE instruction.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 143

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 8 Cache Organization and Operation

he
data

line
valid,

its for
or each
8.2 Cache Organization

Figure 8-1 shows the organization of the 5K cache subsystem. Each cache contains four components: the I-cac
contains the instruction cache controller, the I-Tag RAM, I-Data RAM, and I-WS RAM; the D-cache contains the
cache controller, the D-Tag RAM, D-Data RAM, and D-WS RAM.

Figure 8-1 5K Cache Subsystem Organization

The contents of the individual RAM components are shown inFigure 8-2.

Figure 8-2 Cache RAM Formats

The Tag RAM contains the physical address bits that are used in the comparison for hit calculation and cache-
selection. It also contains control/status information for the cache line—the Valid bit is used to indicate if the line is
the Lock bit permits the line to be locked, and the optional Parity bit allows the detection of parity errors.

Each location in the Data RAM contains a doubleword (8 bytes) of cache data, along with optional even parity b
each data byte. Note that each cache line, containing four doublewords (32 bytes), has optional even parity bits f
data byte.

I-Tag
RAM

I-Data
RAM

I-Cache

D-Tag
RAM

D-Data
RAM

Instruction Cache Controller Data Cache Controller

I-WS
RAM

D-WS
RAM

D-Cache

0

L V Tag

Data RAM

71 64 63 0

DataP Data

Way Selection RAM (Data Cache)

Way Selection RAM (Instruction Cache)

WS DirtyP Dirty

WS

13

5 0

8 7 4 3 0

Tag RAM

26 25 24 23

P

144 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

8.2 Cache Organization

sed
S

ction

 in
hysical
s, and,
The WS RAM contains a status field managed by the way-selection logic that is used to implement the LRU-ba
algorithm for efficient cache-line replacements. The WS RAMs in the data cache contain a 6-bit status for the W
algorithm, 4 Dirty bits, and 4 associated optional even parity bits (one for each way). The WS RAMs in the instru
cache contain only a 6-bit status for the WS algorithm. Refer toSection 8.6, "Way Selection Algorithm" on page 149
andFigure 8-4 on page 146.

When the cache is accessed, bits in the virtual address are used to index both Tag and Data RAMs, as shownFigure
8-3andFigure 8-4. The number of virtual address bits that are used depends on the cache way size. When the p
address is available from the MMU, it is compared with the physical address tag(s) indexed by the virtual addres
if there is a match, the cache data is delivered and the WS status is updated.

Figure 8-3 Cache Data and Tag Indexing

Tag Line

Data Line
VA[13:3]2

Tag

24

Valid
Lock

Data

64

Data Parity

8

Parity

Virtual Address

Way Size 1) 2)

4 KB VA[11:5] VA[11:3]

8 KB VA[12:5] VA[12:3]

16 KB VA[13:5] VA[13:3]

VA[13:5]1

One RAM for each
cache way
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 145

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 8 Cache Organization and Operation

ted by

ex the
Tag
en the
AMs.
will

Stage.

y, the
Figure 8-4 Way Selection Indexing

When there is an I-cache or D-cache miss, the cache controller initiates a four doubleword refill to the way selec
the WS algorithm. The cache controllers are capable of processing hits during refills and uncached loads.

8.2.1 Instruction Cache Access

The virtual address for the instruction fetch is available prior to the instruction pipeline’s I Stage and is used to ind
I-Data RAMs, I-Tag RAMs, and I-WS RAM, as explained in the previous section. A read of the I-Data RAM and I-
RAM is initiated at the beginning of the I Stage to determine if the required instruction resides in the cache. Wh
MMU indicates that the physical address is available, it is compared with the 1 to 4 different tags from the I-Tag R
If there is an ITLB hit, the address will be available in the second half of the I Stage. The calculated hit information
be available at the end of the I Stage, and in case of a hit, the instruction will be available in the beginning of the D
Information generated by the WS algorithm is written to the WS RAM after the instruction is returned.

Figure 8-5shows an example of an instruction load that generates an ITLB hit as well as a cache hit. For simplicit
figure shows only one of the up to 4 doublewords loaded from the cache data arrays.

Dirty/WS Line

Dirty

43

DirtyPWS

Virtual Address

Way Size 1)

4 KB VA[11:5]

8 KB VA[12:5]

16 KB VA[13:5]

VA[13:5]1

4362Set
associativity

2) 3)
(D-Cache

Only)

1 (DM) 0 1

2 1 2

3 3 3

4 6 4
146 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

8.2 Cache Organization

x the
g

 the
hit,
the

rated

 figure
Figure 8-5 Example of Instruction Fetch with ITLB Hit and Cache Hit

8.2.2 Data Cache Access

The virtual address for a data load is available prior to the falling clock edge of the E Stage and is used to inde
D-Data RAMs, D-Tag RAMs, and D-WS RAM. A read of the D-Data RAM and D-Tag RAM is initiated on the fallin
clock edge of the E Stage to determine if the required data resides in the cache. When the MMU indicates that
physical address is available, it is compared with the 1 to 4 different tags from the D-Tag RAMs. If there is a DTLB
the address will be available in the first half of the M Stage. The calculated hit information will be available prior to
falling edge in the M Stage, and for a hit, the data will be available in the last half of the M Stage. Information gene
by the WS algorithm is written to the WS RAM after the data is returned.

Figure 8-6 shows an example of a data load that generates a DTLB hit as well as a cache hit. For simplicity, the
shows only one of the up to 4 doublewords loaded from the data arrays.

Load

VA[13:3]

D

VA[13:5]

T

I D R E

VA

PA

D

Cache command

Data array index

Data from cache

Tag array index

Tag from cache

IFU

Clock

Fetch, Hit

IFU fetch indication

Virtual address

Physical address

Instruction returned

Instr. ready indication
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 147

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 8 Cache Organization and Operation

e content
k-up

e content
k-up
icating
(the

ed.
Figure 8-6 Example of Data Load with DTLB Hit and Cache Hit

8.3 Cache Write Policies

The MMU selects the cache write policy based on the virtual address (refer toChapter 4, “Memory Management,” for
further information). The 5K core supports the following four cache write policies:

• Cacheable, Write through, No Write allocate

• Cacheable, Write through, Write allocate

• Uncached (Write around)

• Cacheable, Write-back (Write allocate)

These policies are described in the following subsections.

8.3.1 Write Through, No Write Allocate

The cache is first searched to see if the target address is in the cache. If the target resides in the cache, the cach
is updated, and main memory is also written; the Dirty bit and Tag status bits are not modified. If the cache loo
misses, only main memory is written.

8.3.2 Write Through, Write Allocate

The cache is first searched to see if the target address is in the cache. If the target resides in the cache, the cach
is updated, and main memory is also written; the Dirty bit and Tag status bits are not modified. If the cache loo
misses, the line is refilled into the cache, the store data is merged with the refilled data, the Dirty bit is cleared (ind
the line is clean), and the store data is also sent to the write buffer. The cache line that is replaced by the refill
so-calledvictim) is selected by the LRU algorithm (refer toSection 8.6, "Way Selection Algorithm" on page 149 and
Figure 8-4 on page 146). If the line to be replaced is Dirty, it is evicted (written back to memory) before it is replac

Load

VA[13:3]

D

VA[13:5]

T

I D R E M W

VA

PA

D

Cache command

Data array index

Data from cache

Tag array index

Tag from cache

LSU

Clock

Load, Hit

LSU load indication

Virtual address

Physical address

Data returned

Data ready indication
148 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

8.4 Cached Loads and Fetches

e content
re data
ced by

are written

res and

ead from

tents.

ct) on a
ways

ld of the

ld of the

way to

ys be
8.3.3 Write Back, Write Allocate

The cache is first searched to see if the target address is in the cache. If the target resides in the cache, the cach
is updated, and the line is marked as Dirty. If the cache look-up misses, the line is refilled into the cache, the sto
is merged with the refilled data, and the line is marked as Dirty. The least-recently used (LRU) cache line is repla
the line refilled. If the line to be replaced is Dirty, it is evicted (written back to memory) before it is replaced.

8.3.4 Uncached

Addresses in memory areas designated as uncached are not read from the cache. Stores to these addresses
directly to main memory, without modifying the cache contents.

If the memory is designated as uncached accelerated, the write buffer will, whenever possible, gather multiple sto
then initiate a burst write to memory. Uncached accelerated stores are described inSection 8.7, "Write Buffer".

8.4 Cached Loads and Fetches

For cached loads and instruction fetches, the cache is searched first, and if there is a cache miss, the data is r
main memory. The least-recently used cache line is evicted if it is Dirty and replaced by the new data.

8.5 Uncached Loads and Fetches

Uncached loads and instruction fetches always read data from main memory, and do not modify the cache con

8.6 Way Selection Algorithm

The 5K core uses a least-recently used (LRU) algorithm to select which cache line to replace (and possibly evi
cache miss. The algorithm is implemented by including a field for each index that encodes the order in which the
have been accessed. These fields are stored in the WS RAM (refer toFigure 8-2).

The WS field of an index is updated as follows:

• When a cache hit is generated, the associated way is updated to be the most-recently used way in the WS fie
corresponding index. The order of the other ways relative to each other is unchanged.

• When a tag line is invalidated, the associated way is updated to be the least-recently used way in the WS fie
corresponding index. The order of the other ways relative to each other is unchanged.

On a cache miss, the WS field (and Dirty bits) of the corresponding index is read and decoded to select which
refill (and evict if the associated Dirty bit is set).

PREF and PREFX instructions causing a line refill will set the state to most-recently used. Nudged lines will alwa
marked as least-recently used.

On a CACHE instruction, the WS field is updated as follows:

• Index (Writeback) Invalidate: Least-recently used.

• Index Load Tag: No update.

• Index Store Tag, WST=0: Most-recently used if valid bit is set inTagLo CP0 register. Least-recently used if valid
bit is cleared inTagLo CP0 register.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 149

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 8 Cache Organization and Operation

may not
e

cache
rite

byte)
rough
ow.

buffer
tore has

eword
ust be

order to
ss (and the
athering
uncached
ing store
ing store
r will

g

• Index Store Tag, WST=1: Update the field with the contents of theTagLo CP0 register (refer toSection 8.10,
"CACHE Instruction" for the valid values of this field).

• Index Store Data:No update.

• Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Fill: Most-recently used.

• Hit (Writeback) Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Hit Writeback: No update.

• Fetch and Lock:Most-recently used.

Note that because the caches support hit-under-miss, the line that is chosen to be refilled (and possibly evicted)
always be the least-recently used line at the precise moment the line is replaced. It is only guaranteed to be th
least-recently used line at the moment the cache miss is detected.

No special action is needed to initialize the WS field, because that field will be valid after all the lines/ways in the
have been invalidated. Initializing the Tag RAMs by using the CACHE Index Store Tag (WST=0) instruction to w
zeros to the Tag RAMs will force the way to be marked as least-recently used.

8.7 Write Buffer

The write buffer is used to buffer all store transactions to the Bus Interface Unit (BIU). It contains a one-line (32-
eviction buffer used for cache-line write backs, as well as a four-doubleword entry store buffer used for write-th
and uncached stores. For uncached accelerated stores, the store buffer has special features, as described bel

In order to avoid read-after-write hazards, the write buffer contains logic that checks the addresses of all write-
entries against load addresses from the data cache controller. If there is a conflict, the load is held until after the s
completed.

As soon as data is stored in the write buffer, a request for a store transaction is sent to the BIU.

The write buffer supports uncached accelerated stores by merging consecutive-word stores into a single doubl
store, and by gathering four doublewords for a single burst transaction. Note that the first doubleword of a burst m
aligned on a cache-line boundary (address bits [4:3] = 00). Note also that sequential address order is required in
merge and gather uncached accelerated stores. The next address must be a) the same as the previous addre
store have a valid merge pattern) to cause a merge, or b) the previous address incremented by 1 to continue the g
process. A valid merge pattern requires that the store is an uncached accelerated store, and that two successive
accelerated stores have complementary byte enables—either the first store has byte enables 0F, and the follow
is to the same address and has inverted byte enables (F0), or the first store has byte enables F0, and the follow
is to the same address and has inverted byte enables (0F). When the merge/gather is complete, the write buffe
request a burst transaction to empty the buffer.

Merged/gathered data in the store buffer is transferred to the external interface buffer under one of the followin
conditions:

• Completion of merge/gather.

• A mergeable store is attempted from a non-sequential address.

• Execution of the SYNC instruction.

• Execution of the WAIT instruction.

• A store having an invalid merge pattern.

• Any store that is not an uncached accelerated store.
150 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

8.8 Read Buffer

bles
iction
iction
U, the

iority)

, an
aits for

 the
lerated

arrays,
, all
tail in
che

ing the
ct

ue,
for
• Any load from outside accelerated address space.

8.8 Read Buffer

The read buffer is a four doubleword-deep FIFO, placed between the BIU and the data cache controller. It ena
cache-line refills from the BIU to start immediately, even when the data cache controller has to complete a line ev
before it can receive data from the BIU—the read buffer can store the incoming data for the cache refill until the ev
has completed. However, if the data cache controller is ready to receive the refill data when it is available in the BI
FIFO is bypassed, and the data is forwarded directly from the BIU to the data cache controller.

8.9 Transaction Priority

When multiple transactions are requested, they are handled according to the priority (from highest to lowest pr
shown below.

1. Eviction buffer store on collision with a pending data load or refill.

2. Write buffer store on collision with a pending data load or refill.

3. Refill of a data cache line.

4. Uncacheable data load transaction.

5. Refill of an instruction cache line.

6. Uncacheable instruction load transaction.

7. Eviction buffer store.

8. Write buffer store.

Note that while a data load or refill waits for the write or eviction buffer store to finish its data phase on collision
instruction load or refill or a new write can begin its address phase. The same is true when an uncached load w
an uncached write to finish its data phase.

Uncached transactions are always handled in the same order as the order in which the instructions requesting
transactions are executed. This rule only applies to the true uncached transactions; that is, the uncached acce
transactions are prioritized according to the list above.

8.10 CACHE Instruction

Both caches support the CACHE instructions, which allow users to manipulate the contents of the Data and Tag
including the locking of individual cache lines. Note that before the CACHE instructions are allowed to execute
initiated refills are completed and stores are sent to the write buffer. The CACHE instructions are described in de
Chapter 12, “Instructions.” Caution: It is recommended not to lock all ways in cache as at least one way in the ca
must be available for cache line refill to process a cache miss.

The CACHE Index Load Tag and Index Store Tag instructions can be used to read and write the WS RAM by sett
WSTbit in theErrCtl register. (TheErrCtl register is described inSection 6.23, "ErrCtl Register (CP0 Register 26, Sele
0)" on page 134.) Note that when theWSTbit is zero, the CACHE index instructions access the cache Tag array.

Not all values of the WS field are valid for defining the order in which the ways are selected. This is only an iss
however, if the WS RAM is written after the initialization (invalidation) of the Tag array. Valid WS field encodings
way selection order is shown inTable 8-1, Table 8-2, andTable 8-3.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 151

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 8 Cache Organization and Operation

ormance
che.
8.11 PREF and PREFX Instructions

The data cache controller supports the Prefetch instructions, PREF and PREFX, which are used to increase perf
by informing the processor that the specified data is likely to be accessed or that it can be removed from the ca

Table 8-1 Way Selection Encoding, 4 Ways

Selection Ordera

a. The order is indicated by listing the least-recently used way to the left and the most-recently used way
to the right, etc.

WS[5:0] Selection Order WS[5:0]

0123 000000 2013 100010

0132 000001 2031 110010

0213 000010 2103 100110

0231 010010 2130 101110

0312 010001 2301 111010

0321 010011 2310 111110

1023 000100 3012 011001

1032 000101 3021 011011

1203 100100 3102 011101

1230 101100 3120 111101

1302 001101 3201 111011

1320 101101 3210 111111

Table 8-2 Way Selection Encoding, 3 Ways

Selection Ordera

a. The order is indicated by listing the least-recently used way to the left and the most-recently used way
to the right, etc.

WS[5:0]b

b. A ’?’ indicates a don’t care when written and unpredictable when read.

Selection Order WS[5:0]

012 0??00? 120 1??10?

021 0??01? 201 1??01?

102 0??10? 210 1??11?

Table 8-3 Way Selection Encoding, 2 Ways

Selection Ordera

a. The order is indicated by listing the least-recently used way to the left and the most-recently used way
to the right, etc.

WS[5:0]b

b. A ’?’ indicates a don’t care when written and unpredictable when read.

Selection Order WS[5:0]

01 ???0?? 10 ???1??
152 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

8.12 Error Handling

nd

che

ystems

ag has
 bit.
ror is

ation
cted
a cache
there

cause

must
y bit is
The load, load_streamed, and load_retained hint values are all handled as loads. The store, store_streamed, a
store_retained hint values are all handled as stores with write allocation.Table 8-4shows the action taken according to
the hints.

The PREF and PREFX instructions are described in detail inChapter 12, “Instructions.”

8.12 Error Handling

The 5K core supports error handling for parity checks on cache lines errors that occur as a result of internal ca
operations as well as errors that occur as a result of external memory operations.

8.12.1 Parity

The cache subsystem has optional support for parity checking. The description in this section applies only to s
with parity.

All parity bits are even. The cache Data RAMs contain byte parity bits, with 32 parity bits per line. The cache T
one parity bit per line for the 24-bit Tag, the Valid bit, and the Lock bit combined, and one parity bit for the Dirty
(Evictions of dirty lines are carried out regardless of the parity.) When the Data or Tag has a parity error, the er
signaled and the cache controller continues normal operation. For a Tag parity error, theCacheErr register’sET bit is
set, and for a Data parity error, theCacheErr register’sED bit is set. For more information on parity error indication,
refer toSection 6.23, "ErrCtl Register (CP0 Register 26, Select 0)" on page 134.

In general, the way indication when a cache error occurs is only valid for data RAM parity errors. The index indic
is always valid, but the lower bits ([4:0]) are only valid for data RAM parity errors. Tag RAM parity errors are dete
when there is cache hit or miss (instruction and data cache). Data RAM parity errors are detected when there is
hit (instruction and data cache) and during eviction (data cache only). Dirty bit parity errors are only detected when
is cache line replacement (data cache only).

Uncached transactions will never cause cache parity errors.

The invalidation of cache lines with parity errors is the responsibility of software.

All cache instructions except Index Load Tag (WST=0 or WST=1) and Index Store Tag (WST=0 or WST=1) can
cache error exceptions when a parity error is detected.

To avoid using lines with hardware errors (for example, lines with bits that are ‘stuck’ at a particular value), the line
be locked and then invalidated. If the Valid bit is stuck at 1, the Tag must be set to an unused address. If the parit
stuck, the Tag must be adjusted accordingly (since parity must be set correctly to avoid future parity errors).

In some cases of cache error detection, it is impossible to determine (by examining cache line status bits or theCacheErr
register) which process was corrupted by the error. In such cases, the fatal error indication (EF bit) is set in theCacheErr

Table 8-4 Action on PREF and PREFX Instructions

Cache
Hit/Miss

PREF/PREFX Hint

load,
load_streamed,
load_retained

store,
store_streamed,
store_retained

Nudge

Hit No action No action Evict if dirty and
invalidate

Miss Refill the line Refill the line No action
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 153

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 8 Cache Organization and Operation

loaded
one way
ption is

re
part of

n the
d

register. Refer toSection 6.24, "CacheErr Register (CP0 Register 27, Select 0)" for details. The following errors are
indicated as fatal:

• Dirty parity error in dirty victim (Dirty bit cleared in Tag).

• Tag parity error in dirty victim.

• Data parity error in dirty victim.

• Write back store miss and WS field error at the requested index.

• Dual/Triple errors from different transactions, for example, a scheduled and a non-scheduled load.

8.12.2 WS Field Error

The bits used for the LRU algorithm are not parity protected, because they do not affect the correctness of the data
from the cache. However, when cache lines are refilled on a cache miss, the processor checks that one and only
is selected when finding the least-recently used way. If this check fails and parity is enabled, a Cache Error exce
signaled and theEW bit in theCacheErr register is set. Refer toSection 6.24, "CacheErr Register (CP0 Register 27,
Select 0)" on page 135 for details on error indication.

All values of the WS field not shown inTable 8-1, Table 8-2, andTable 8-3cause a WS Field Error except those listed
in Table 8-5. The values shown inTable 8-5 define a LRU way/line, though the order of the other three ways/lines a
undefined. Thus a subsequent update of the field might cause the entire WS field to be valid, without the invalid
the field having caused any errors or unnecessary exceptions.

When a way is locked, the bits in the WS field which contain information about the position of that particular way i
LRU queue are ignored and will not cause any errors for the line.Table 8-6lists the bits in the WS field that are associate
with each of the ways.

Note that a Cache Error exception is not caused by locking all the ways (so that no way is selected).

Table 8-5 Invalid WS Fields Not Causing Errors

Selection Orderab

a. The order is indicated by listing the least-recently used way to the left and the most-recently used way
to the right, etc.

b. A ’?’ indicates undefined order.

WS[5:0] Selection Order WS[5:0]

0??? 000011 2??? 101010

0??? 010000 2??? 110110

1??? 001100 3??? 011111

1??? 100101 3??? 111001

Table 8-6 Association of Ways and Bits in the WS Field

Way Associated WS Bits

0 2, 3, 5

1 1, 2, 4

2 0, 1, 5

3 0, 3, 4
154 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

8.12 Error Handling

recise or

ise.

d during
during

 rule
8.12.3 Bus Errors

When bus errors are detected, a Bus Error exception is generated for processing by CP0. Bus errors can be p
imprecise, as explained inSection 5.11, "Bus Error Exception" on page 90. Data bus errors are imprecise and thus
generate imprecise bus error exceptions (DBE) for processing by CP0. Bus errors on instruction fetch are prec

In general, only bus errors on streamed instructions or data cause exceptions. If one or more bus errors is signale
a cache refill operation, the cache line state is set to invalid and the line is unlocked. Bus errors on any doubleword
a write allocation will also cause Bus Error exceptions.

Bus errors that occur during any kind of store operation (single store, bursts, evictions) cause exceptions. This
applies to the execution of the CACHE, PREF, and PREFX instructions as well as during normal operation.

Bus errors that occur during refills initiated by PREF and PREFX do not cause exceptions.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 155

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 8 Cache Organization and Operation
156 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

ent and

sing the

gent can
ffect on

is in a

ently in
ption

rrently

idle
line is
omes

ut pins

e
d
e

Chapter 9

Power Management

Chapter 8 describes the power management features of the 5K processor core, including active power managem
power-down modes of operation. It contains the following sections:

• Section 9.1, "Register-Controlled Power Management"

• Section 9.2, "Instruction-Controlled Power Management"

9.1 Register-Controlled Power Management

The 5K processor core provides a standard software mechanism for placing the system into a low-power state, u
Reduced Power (RP) bit in theCP0 Statusregister. Setting theRP bit causes the 5K core to assert theSI_RP signal,
which indicates to an external agent that the device is ready to be placed in power-down mode. The external a
then decide whether to reduce the clock frequency and place the core into power-down mode. Other than its e
theSI_RP signal, theRP bit has no effect internally in the 5K core.

Two additional bits in theCP0 Status register,Exception Level (EXL) andError Level (ERL), support the power
management function by informing an external agent of the occurrence of an exception or error while the core
low-power state.

The occurrence of an interrupt exception causes theEXLbit to be set, which in turn causes the assertion of theSI_EXL
signal on the external bus, indicating to the external agent that an exception has occurred. If the processor is curr
reduced-power mode (SI_RPis HIGH), the external agent can choose to speed up the clocks in order for the exce
to be serviced quickly.

Similarly, the occurrence of an error exception causes theERL bit to be set, which in turn causes the assertion of the
SI_ERLsignal on the external bus, indicating to the external agent that an error has occurred. If the processor is cu
in reduced-power mode (SI_RP is HIGH), the external agent can choose to speed up the clocks.

9.2 Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is through execution of the WAIT instruction. If the bus is
when the WAIT instruction reaches the M stage of the pipeline, the internal clocks are suspended and the pipe
frozen. If the bus is not idle when the WAIT instruction reaches the M stage, the pipeline stalls until the bus bec
idle, at which time the clocks are stopped. However, the internal timer continues counting, and some of the inp
—SI_Int[5:0], SI_NMI, SI_Reset, SI_ColdReset, andEJ_DINT— continue to function normally.

Executing the WAIT instruction causes the assertion of theSI_SLEEPsignal, which indicates to external agents that th
device is in low-power mode. When the CPU is in instruction-controlled power management mode, any enable
interrupt, NMI, debug interrupt throughEJ_DINT, or Reset condition causes the CPU to exit this mode and resum
normal operation. The CPU returns to the instruction-controlled power management mode when the next WAIT
instruction is executed.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 157

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 9 Power Management
158 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

ections:

abilities
ucture
nds the
rated

1.

Test

ented
Chapter 10

EJTAG Debug Features

This chapter describes the EJTAG debug features supported by the 5K processor cores. It contains the following s

• Section 10.1, "Introduction"

• Section 10.2, "EJTAG Processor Extensions"

• Section 10.3, "Debug Control Register"

• Section 10.4, "Hardware Breakpoints"

• Section 10.5, "EJTAG Test Access Port"

Note thatSection 10.5, "EJTAG Test Access Port" on page 188 does not describe the TAP signal-level interface.

10.1 Introduction

EJTAG is a hardware/software subsystem that provides comprehensive debugging and performance tuning cap
to MIPS microprocessors and to system-on-a-chip components having MIPS processors. It exploits the infrastr
provided by the IEEE 1149.1 JTAG Test Access Port (TAP) standard to provide an external interface, and exte
MIPS instruction set and privileged resource architectures to provide a standard software architecture for integ
system debugging.

The following documents have background information for the description in this chapter:

• “EJTAG Specification”, rev. 02.60 or later, MIPS Technologies document number MD00047.

• “EJTAG Implementation Application Note”, rev. 1.00 or later, MIPS Technologies document number MD0007

• IEEE Std. 1149.1-1990, “IEEE Standard Test Access Port and Boundary-Scan Architecture”

10.1.1 EJTAG Components and Options

EJTAG hardware support consists of several distinct components: extensions to the 5K processor, the EJTAG
Access Port, the Debug Control Register, and the Hardware Breakpoint Unit.Figure 10-1shows the relationship between
these components in the EJTAG implementation. Some components and features are optional, and are implem
based on the needs of an implementation.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 159

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

p mode
on, as

dicates
ftware

data
 to
Figure 10-1 Simplified Block Diagram of EJTAG Components

Refer to the configurability description in theMIPS64 5K Processor Core Family Implementor’s Guide to determine
which optional blocks are included.

10.1.1.1 EJTAG Extensions to the MIPS Processor

The processor supports EJTAG-specific instructions, additional system coprocessor (CP0) registers, a single-ste
of execution, and vectoring to debug exceptions, which puts the processor in a special Debug Mode of executi
described inSection 10.2, "EJTAG Processor Extensions" on page 162.

10.1.1.2 Debug Control Register

The Debug Control Register (DCR) is a memory-mapped register that is provided as part of the processor. It in
the availability and status of EJTAG features. The memory-mapped region containing the DCR is available to so
only in Debug Mode.

Refer toSection 10.3, "Debug Control Register" on page 169 for more information on the DCR.

10.1.1.3 Hardware Breakpoint Unit

The optional Hardware Breakpoint Unit implements memory-mapped registers that control the instruction and
hardware breakpoints. The memory-mapped region containing the hardware breakpoint registers is accessible
software only in Debug Mode.

If hardware breakpoints are a part of the implementation, then the following functionalities are provided:

• Four independent instruction hardware breakpoints

• Two independent data hardware breakpoints

Processor

MMU

Cache
Controller

Hardware
Breakpoint

(TLB)
Bus Interface

Debug Control
Interrupt and NMI

PC
ADDR

Debug
exception

control etc.

ASID
TYPE
BYTELANE
DATA

EJTAG
TAP TAP

Memory

EJ_DINT

System
Interface

dmseg/drseg

Probe enable indication

Debug exception control, debug interrupt request etc.

Debug interrupt request

Unit (BIU)

and
Coprocessor 0

Register (DCR)

Non-EJTAG features Non-optional EJTAG features Optional EJTAG features

Unit

access bus
160 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.1 Introduction

AG
r access
via the

but
e

ocations

cessible
neral
65

nt of the
de. These
out the

t of the
e. The

as access
ade

n

The presence or absence of hardware breakpoint capability is indicated to debug software in the DCR.

Refer toSection 10.4, "Hardware Breakpoints" on page 171 for more information on the DCR.

10.1.1.4 EJTAG Test Access Port

The optional EJTAG Test Access Port (TAP) provides a standard JTAG (IEEE 1149.1) TAP interface to the EJT
system. The TAP is necessary for all TAP-based EJTAG capabilities to allow host-based debugging and processo
to external debug memory. The presence or absence of off-board EJTAG memory is indicated to debug software
DCR.

An implementation without a TAP implicitly disallows the EJTAG memory and TAP system access capabilities,
allows the remaining EJTAG services (Debug Mode, single-step, and software and hardware breakpoints) whil
executing from RAM or ROM.

Refer toSection 10.5, "EJTAG Test Access Port" on page 188 for more information on the TAP.

10.1.2 Register and Memory Map Overview

This subsection summarizes the registers and special memory that are used for the EJTAG debug solution. The l
of more details on these registers and memory locations are indicated below.

10.1.2.1 Coprocessor 0 Register

The Coprocessor 0 (CP0) registers consist of three registers related to debug features. These registers are ac
through the debug software executed on the processor; they provide debug control and status information. Ge
information about the debug CP0 registers is found inSection 10.2.4, "EJTAG Coprocessor 0 Registers" on page 1.

10.1.2.2 Memory-Mapped EJTAG Register

The memory-mapped EJTAG registers are located in the debug register segment (drseg), which is a sub-segme
debug segment (dseg). Debug software accesses these registers when the processor is executing in Debug Mo
registers provide both miscellaneous debug control and control of hardware breakpoints. General information ab
debug segment and registers is found inSection 10.2.5, "Debug Mode Address Space" on page 166andSection 10.2.5.2,
"Access to drseg (EJTAG Registers) Address Range" on page 167.

The following registers are present in the drseg:

• Debug Control Register (DCR), seeSection 10.3, "Debug Control Register" on page 169

• Instruction hardware breakpoint registers (if hardware breakpoints are implemented), seeSection 10.4.6, "Instruction
Breakpoint Registers" on page 180

• Data hardware breakpoint registers (if hardware breakpoints are implemented), seeSection 10.4.7, "Data Breakpoint
Registers" on page 183

10.1.2.3 Memory-Mapped EJTAG Memory

The memory-mapped EJTAG memory is located in the debug memory segment (dmseg), which is a subsegmen
debug segment (dseg). Debug software accesses this segment when the processor is executing in Debug Mod
EJTAG probe handles all accesses to this segment through the Test Access Port (TAP), whereby the processor h
to dedicated debug memory even if no debug memory was originally located in the system. The transactions m
through the memory-mapped EJTAG memory are denoted processor accesses, and is shown as an example iSection
10.5.3, "Example of EJTAG Memory Access through Processor Access" on page 202.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 161

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

n

 the TAP.

re in this
in order
lowing

s"

ge

eption,
General information about the debug segment and memory is found inSection 10.2.5, "Debug Mode Address Space" o
page 166.

10.1.2.4 EJTAG Test Access Port Registers

The probe accesses EJTAG Test Access Port (TAP) registers (shown inTable 10-5 on page 166) through the TAP, so the
processor cannot access these registers. These registers allow specific control of the target processor through
General information about the TAP registers is found inSection 10.5.2, "TAP Data Registers" on page 190.

10.1.3 Register Field Notations

Table 10-1 defines the R/W0 and R/W1 read/write notations used in the descriptions of the debug registers.

10.2 EJTAG Processor Extensions

This section gives an overview of the processor’s EJTAG debug behavior. Some features are described elsewhe
manual, in which case cross references to their descriptions are used; however, some information is duplicated
to give a more complete view of the debug features. The 5K processor core extensions for EJTAG provide the fol
features which are always available:

• Debug exceptions, seeSection 10.2.1, "Debug Exceptions" on page 162

• Debug Mode execution, seeSection 10.2.2, "Debug Mode Execution" on page 163

• Debug Mode handling of processor resources, seeSection 10.2.3, "Debug Mode Handling of Processor Resource
on page 163

• EJTAG CP0 registers: Debug, DEPC, and DESAVE, seeSection 10.2.4, "EJTAG Coprocessor 0 Registers" on pa
165

• Debug Mode address space with memory-mapped debug segment (dseg), seeSection 10.2.5, "Debug Mode Address
Space" on page 166

• Interrupt and NMI control from Debug Control Register (DCR), seeSection 10.2.6, "Interrupts and NMIs" on page
168

• Reset issues, seeSection 10.2.7, "Reset and Soft Reset of Processor" on page 168

• Debug interrupt request (EJ_DINT) signal, described in the “EJTAG Interface” chapter ofMIPS64 5K Processor
Core Family Integrator’s Guide document.

10.2.1 Debug Exceptions

Exceptions that causes the processor to go from Non-Debug Mode to Debug Mode are described inSection 6.1, "Index
Register (CP0 Register 0, Select 0)" on page 105 and Section 5.23, "Debug Exceptions" on page 96. For example, an
exception can occur on an SDBBP (Software Debug Breakpoint) instruction or due to a Debug Single Step exc
described inSection 5.23.6, "Debug Single Step Exception" on page 98.

Table 10-1 Register Field Read/Write Notations

Read/Write
Notation

Hardware Interpretation Software Interpretation

R/W0 Similar to the R/W interpretation, except a software write of value 1 to this bit is ignored.

R/W1 Similar to the R/W interpretation, except a software write of value 0 to this bit is ignored.
162 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.2 EJTAG Processor Extensions

uction

gisters as
ddressing
lities

re can

Mode.

INED if

n

usable
10.2.2 Debug Mode Execution

Debug Mode is entered only through a debug exception. It is exited as a result of either execution of a DERET instr
or application of a Reset or Soft Reset exception.

When the processor is operating in Debug Mode it has access to the same resources, instructions, and CP0 re
in Kernel Mode. Restrictions on Kernel Mode access (non-zero coprocessor references, access to extended a
controlled by UX, SX, KX, etc.) apply equally to Debug Mode, but Debug Mode provides some additional capabi
as described in this chapter.

Kernel Mode, Supervisor Mode, and User Mode are collectively considered as Non-Debug Mode. Debug softwa
determine if the processor is in Non-Debug Mode or Debug Mode through the DM bit in the Debug register.

10.2.3 Debug Mode Handling of Processor Resources

Unless otherwise specified, the processor resources in Debug Mode are handled identically to those in Kernel
Some identical cases are described in the following subsections for emphasis.

In addition, see the following related sections for more information:

• Section 10.2.6, "Interrupts and NMIs" for handling in both Debug and Non-Debug Modes

• Section 10.2.7, "Reset and Soft Reset of Processor" for handling in both Debug and Non-Debug Modes

10.2.3.1 Debug Mode Instruction Set

The full native ISA of the processor is accessible in Debug Mode.

Use the DERET (Debug Exception Return) instruction to return to Non-Debug Mode from Debug Mode.

Coprocessor loads and stores to the dseg segment are not supported. The operation of the processor is UNDEF
a coprocessor load or store to dseg is executed in Debug Mode.

10.2.3.2 Debug Mode Exceptions

Exceptions that can occur in Debug Mode are described inSection 5.23.8, "Handling of Exceptions in Debug Mode" o
page 99.

10.2.3.3 Coprocessors

A Debug Mode Coprocessor Unusable exception is raised under the same conditions as for a Coprocessor Un
exception in Kernel Mode (seeSection 10.2.1, "Debug Exceptions" on page 162). Therefore Debug Mode software
cannot reference Coprocessors 1 through 2 without first setting the respective enable in the Status register.

10.2.3.4 Random Register

The Random register is running in Debug Mode.

10.2.3.5 Count Register

The Count register is running in Debug Mode.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 163

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

d in

ores to
sult of

le, a
opriate
s.
egisters

or

f various
 by
10.2.3.6 WatchLo/WatchHi Registers

The WatchLo/WatchHi registers (CP0 Registers 18 and 19) are inhibited from matching any instruction execute
Debug Mode.

10.2.3.7 Load Linked (LL/LLD) and Store Conditional (SC/SCD) Instruction Pair

A DERET instruction does not clear the LLbit, neither does the occurrence of a debug exception. Loads and st
uncacheable locations that do not match the physical address of the previous LL instruction do not affect the re
SC instruction. The value of the LLbit is not directly visible by software.

10.2.3.8 SYNC Instruction Behavior Related to EJTAG Debug

Use the SYNC instruction to request the hardware to commit certain operations before proceeding. For examp
SYNC is required to remove memory hazards on reference to dseg. Similarly, a SYNC combined with the appr
spacing (seeSection 10.2.3.9, "CP0 and dseg Hazards" on page 164) is used to remove Coprocessor 0 (CP0) hazard
For example, the SYNC instruction ensures that status bits in the Debug register and the hardware breakpoint r
are fully updated before the debug handler accesses them and before Debug Mode is exited.

The SYNC instruction provides specific behavior as described inTable 10-2.

The SYNC instruction must be executed before leaving Debug Mode in order to commit all accesses to dseg, f
example, to commit accesses to set up hardware breakpoints.

10.2.3.9 CP0 and dseg Hazards

Because resources controlled via Coprocessor 0 and EJTAG memory and registers in dseg affect the operation o
pipeline stages of the processor, manipulation of these resources might produce results that are not detectable
subsequent instructions for some number of execution cycles. When no hardware interlock exists between one
instruction that causes an effect that is visible to a second instruction, a CP0 or dseg hazard exists.

Table 10-2 SYNC Instruction References

Behavior Section References

Commit accesses to dseg SeeSection 10.2.5, "Debug
Mode Address Space" on page
166

Update the DDBLImpr bits in the Debug register SeeSection 5.23.1, "Exception
Handling of Debug Exceptions"
on page 96 andSection 6.20,
"Debug Register (CP0 Register
23, Select 0)" on page 126

Update the BS bits in the IBS and DBS registers SeeSection 10.4.4.3, "Imprecise
Debug Exception Caused by
Data Breakpoint" on page 178

Update the DBusEP, CacheEP, and MCheckP bits in the Debug register SeeSection 6.20, "Debug Regis-
ter (CP0 Register 23, Select 0)"
on page 126
164 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.2 EJTAG Processor Extensions

acing
general

esolving

utes like
ode runs
Table 10-3lists the spacing required to allow the consumer to eliminate the hazard. The values in the “Required” Sp
column represent spacing that the debug handler code must insert. The values are specific for the 5K core. The
5K core hazard table is listed inTable 12-1 on page 218.

Dependencies from the SYNC instruction as producer take effect because specific updates of dseg memory and r
of pending imprecise exception indications are triggered by the SYNC instruction (refer toSection 10.2.3.8, "SYNC
Instruction Behavior Related to EJTAG Debug" on page 164).

Use an SSNOP instruction should be used for each inserted spacing cycle, because the SSNOP instruction (exec
a NOP) is defined to convert instruction issues to cycles in a superscalar design, in which case the same debug c
on a superscalar MIPS implementation.

10.2.4 EJTAG Coprocessor 0 Registers

The three Coprocessor 0 registers for EJTAG are shown inTable 10-4.

Table 10-3 “Required” CP0 and dseg Hazard Spacing

Producer → Consumer Hazard On
“Required”

Spacing
(Cycles)

SYNC → DERET dseg memory locations 2

SYNC → Load / Store
BSn bits in the IBS and
DBS registers in drseg

2

SYNC → MFC0 Debug
DebugDDBLImpr,
DebugDBusEP,
DebugCacheEP,
DebugMCheckP

2

MTC0 DEPC → DERET DEPC 0

MTC0 Debug → DERET Debug 0

MTC0 Debug[LSNM] → Load / Store in dseg Debug[LSNM] 3

MTC0 Debug[IEXI] → Instructions that can cause an
imprecise exception

Debug[IEXI]
3

Table 10-4 Coprocessor 0 Registers for EJTAG

Register
Number

Sel Register
Mnemonic

Function Reference

23 0 Debug
Debug indications and controls for the processor,
including information about recent debug exception.

SeeSection 6.20, "Debug
Register (CP0 Register
23, Select 0)" on page 126

24 0 DEPC

Debug Exception Program Counter with address of last
debug exception or exception in Debug Mode.

SeeSection 6.21, "Debug
Exception Program
Counter Register (CP0
Register 24, Select 0)" on
page 129
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 165

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

sible as in
se a

sses
emory

gment,
g are not

n
before

erwise

ory in
the
10.2.5 Debug Mode Address Space

Debug Mode access to unmapped address space is identical to that of Kernel Mode. Mapped areas are acces
Kernel Mode, but only if a valid translation is possible immediately by the MMU. A memory access that would cau
TLB-type exception if tried from Kernel Mode causes re-entry into Debug Mode (seeSection 10.2.3.2, "Debug Mode
Exceptions" on page 163) through an exception if the memory access is tried while in Debug Mode. Memory acce
causing TLB-type exceptions are therefore not handled by the usual memory management routines if these m
accesses are made while in Debug Mode.

Updating and handling of cached areas is the same as that in Kernel Mode.

In addition, an uncached and unmapped debug segment dseg (EJTAG area) appears in the address range
0xFFFF FFFF FF20 0000 to 0xFFFF FFFF FF3F FFFF. The dseg appears in the kseg part of the compatibility se
but access to kseg is still possible as described in the subsections below. Coprocessor loads and stores to dse
allowed.Table 10-5 shows the dseg subdivision and attributes.

The SYNC instruction, followed by appropriate spacing as described inSection 10.2.3.9, "CP0 and dseg Hazards" o
page 164, must be executed to ensure that an access to dseg is committed (for example, after writing to dseg and
leaving Debug Mode). This procedure ensures that locations in dseg are fully updated for Non-Debug Mode, oth
behavior of the processor is UNDEFINED.

10.2.5.1 Access to dmseg (EJTAG memory) Address Range

The probe services the dmseg segment, and the transactions made through the memory-mapped EJTAG mem
dmseg are denoted as processor accesses.Table 10-6 shows the behavior of processor accesses in Debug Mode to
dmseg address range from 0xFFFF FFFF FF20 0000 to 0xFFFF FFFF FF2F FFFF.

31 0 DESAVE

Debug Exception Save scratchpad register available for the
debug handler.

SeeSection 6.30, "Debug
Exception SAVE
(DESAVE) (CP0 register
31)" on page 140

Table 10-5 Physical Address and Cache Attribute for dseg, dmseg and drseg

Segment
Name

Subsegment
Name

Virtual Address Reference Address Cache
Attribute

dseg

dmseg
0xFFFF FFFF FF20 0000

to
0xFFFF FFFF FF2F FFFF

Because the dseg address range is serviced
exclusively by the EJTAG features, there
are no physical address per se. Instead the
lower 21 bits of the virtual address select
the appropriate reference in either EJTAG
memory or registers.

References are not mapped through the
TLB, nor do the accesses appear on the
external system memory interface.

Uncached

drseg
0xFFFF FFFF FF30 0000

to
0xFFFF FFFF FF3F FFFF

Table 10-4 Coprocessor 0 Registers for EJTAG (Continued)

Register
Number

Sel Register
Mnemonic

Function Reference
166 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.2 EJTAG Processor Extensions

bit was
bEn bit
ccur
aring it to
 cleared
e.

t or Soft
ED if

ries to

 are
if the

.

f the
FromTable 10-6, when ProbEn equals 0 for dmseg accesses, debug software accessed dmseg when the ProbEn
0, indicating that there is no probe available to service the request. Debug software must read the state of the Pro
in the DCR register before attempting to reference dmseg. However, accessing dmseg while ProbEn is 0 can o
because there is an inherent race between the debug software sampling the ProbEn bit as 1 and the probe cle
0. The probe can therefore not assume that a reference to dmseg never occurs if the ProbEn bit is dynamically
to 0. If debug software references dmseg when ProbEn is 0, the reference hangs until it is satisfied by the prob

The protocol for accesses to dmseg does not allow a transaction to be aborted once started, except by a Rese
Reset exception. If the TAP is not present in the implementation, then the operation of the processor is UNDEFIN
the dmseg is accessed. Transactions of all sizes are allowed to dmseg.

10.2.5.2 Access to drseg (EJTAG Registers) Address Range

The drseg segment is used when the memory-mapped debug registers are accessed.Table 10-7 shows the behavior of
processor accesses in Debug Mode to the drseg address range from 0xFFFF FFFF FF30 0000 to
0xFFFF FFFF FF3F FFFF.

Instruction fetches from drseg are not allowed. The operation of the processor is UNDEFINED if the processor t
fetch from drseg.

The DCR register, at offset 0x0000 in drseg, is always available but registers that set up hardware breakpoints
optional and only available if implemented. Debug software is expected to read the DCR register to determine
hardware breakpoint registers exist in drseg. The value returned in response to a read of any unimplemented
memory-mapped register is UNPREDICTABLE, and writes are ignored to any unimplemented register in drseg

The allowed transaction size is limited for drseg, as only doubleword size transactions are allowed. Operation o
processor is UNDEFINED for other transaction sizes.

Table 10-6 Access to dmseg Address Range

Transaction ProbEn bit in
DCR register

LSNM bit in
Debug Register

Access

Fetch
1 x dmseg

0 x See comments below regarding behavior when ProbEn is 0

Load/Store

1
0 dmseg

1 Kernel Mode address space

0
1 Kernel Mode address space

0 See comments below regarding behavior when ProbEn is 0

‘x’ denotes don’t care.

Table 10-7 Access to drseg Address Range

Transaction LSNM bit in
Debug Register

Access

Fetch x Operation of the processor is UNDEFINED at fetch

Load/Store
0 drseg (see comments below the table)

1 Kernel Mode address space

‘x’ denotes don’t care.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 167

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

nterrupt

e NMI

e NMI

es, there
in both

ft Reset

tion is
andler.
e

10.2.6 Interrupts and NMIs

Interrupts and non-maskable interrupts (NMIs) are handled as described in the following subsections.

10.2.6.1 Interrupts

Interrupts are requested through either asserted external hardware signals or internal software-controllable bits. I
exceptions are disabled when any of the following conditions are true:

• The processor is operating in Debug Mode

• The Interrupt Enable (IntE) bit in the Debug Control Register (DCR) is cleared (seeSection 10.3, "Debug Control
Register" on page 169)

• A non-EJTAG-related mechanism disables the interrupt exception

A pending interrupt is indicated through the Cause register, even if Interrupt exceptions are disabled.

10.2.6.2 NMIs

An NMI is requested on the asserting edge of the NMI signal to the processor, and an internal indicator holds th
request until the NMI exception is actually taken.

NMI exceptions are disabled when either of the following is true:

• The Processor is operating in Debug Mode

• The NMI Enable (NMIE) bit in the Debug Control Register (DCR) is cleared (seeSection 10.3, "Debug Control
Register" on page 169)

If an asserting edge on the NMI signal to the processor is detected while the NMI exception is disabled, then th
request is held pending and is deferred until NMI exceptions are no longer disabled.

A pending NMI is indicated in the NMIpend bit in the DCR even if NMI exceptions are disabled.

10.2.7 Reset and Soft Reset of Processor

This subsection covers the handling of issues with respect to Reset and Soft Reset exceptions. For EJTAG featur
is no difference between a Reset and a Soft Reset exception occurring to the processor; they behave identically
Debug Mode and Non-Debug Mode.

10.2.7.1 EJTAGBOOT Feature

The EJTAGBOOT feature allows a Debug Interrupt exception to be generated immediately after a Reset or So
exception has occurred.

When EJTAGBOOT is indicated at the occurrence of a Reset or Soft Reset exception, a Debug Interrupt excep
taken and the debug handler is executed from the probe even if no instructions can be fetched from the reset h
Control of EJTAGBOOT is described inSection 10.5.1.3, "EJTAGBOOT and NORMALBOOT Instructions" on pag
189.
168 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.3 Debug Control Register

the 5K
rs, then

ndicate

ide the

ys
d in the

ftware
points.

lobal

ugh
 DCR
Debug
10.2.7.2 Processor Reset by Probe through Test Access Port

The PrRst bit in the EJTAG Control register is provided on the EJ_PrRst signal. The signal has no reset effect on
core internally, but the external logic may apply reset throgh the ordinary reset signals for the core. If a reset occu
all parts of the system are reset; partial resets are not allowed.

10.2.7.3 Reset Occurred Indication through Test Access Port

The Rocc bit in the EJTAG Control register is set upon occurrence of a Reset or Soft Reset exceptions in order to i
the event to the probe.

Refer toSection 10.5.2.5, "EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)" on page 196for more
information on the EJTAG Control Register.

10.2.7.4 Soft Reset Enable

The optional Soft Reset Enable (SRstE) bit in the Debug Control Register (DCR) can mask the reset signal outs
processor used to generate a Soft Reset exception; the value of the bit is output on the EJ_SRstE signal.

10.2.7.5 Reset of Other Debug Features

The effect of Reset and Soft Reset exceptions also applies to reset of the following:

• Debug Control Register (DCR), seeSection 10.3, "Debug Control Register" on page 169.

• Hardware Breakpoint, seeSection 10.4, "Hardware Breakpoints" on page 171.

• Test Access Port (TAP) EJTAG Control Register, seeSection 10.5, "EJTAG Test Access Port" on page 188.

10.3 Debug Control Register

The Debug Control Register (DCR) controls and provides information about debug issues. This register is alwa
implemented. It is 64 bits wide and can only be accessed with doubleword load and stores. The DCR is locate
drseg at offset 0x0000.

The Debug Control Register (DCR) provides the following key features:

• Interrupt and NMI control when in Non-Debug Mode

• NMI pending indication

• Availability indicator of instruction and data hardware breakpoints

The DataBrk and InstBrk bits within the DCR indicate the types of hardware breakpoints implemented. Debug so
is expected to read hardware breakpoint registers for additional information on the number of implemented break
Refer toSection 10.4, "Hardware Breakpoints" for descriptions of the hardware breakpoint registers.

Hardware and software interrupts can be disabled in Non-Debug Mode using the DCR’s IntE bit. This bit is a g
interrupt enable that is used along with several other interrupt enables that enable specific mechanisms.

The NMI interrupt can be disabled in Non-Debug Mode using the DCR’s NMIE bit; a pending NMI is indicated thro
the NMIpend bit. Pending interrupts are indicated in the Cause register, and pending NMIs are indicated in the
register NMIpend bit, even when disabled. Hardware and software interrupts and NMIs are always disabled in
Mode.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 169

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

output
ces. It is
king can
set at all
asked,
tion of

probe

32

0

The SRstE bit allows masking of the external signal that generates a Soft Reset exception; the value of the bit is
on the EJ_SRstE signal. A soft reset can be applied to the system based on different events, referred to as sour
implementation dependent which soft reset sources in a system can be masked by the SRstE bit. Soft reset mas
be applied to a soft reset source only if that source can be efficiently masked in the system. The result is no re
for any part of the system, if masked. If only a partial soft reset is possible, then that soft reset source is not to be m
because a “half” soft reset might cause the system to fail or hang without warning. There is no automatic indica
whether the SRstE bit is effective.

The ProbEn bit reflects the state of the ProbEn bit from the EJTAG Control register (ECR). Through this bit, the
can indicate to the debug software running on the CPU if it expects to service dmseg accesses.

Figure 10-2shows the format of the DCR register;Table 10-8describes the DCR register fields. The reset values inTable
10-8 take effect on both Reset and Soft Reset exceptions.

Figure 10-2 DCR Register Format

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 ENM 0 Data
Brk

Inst
Brk

0 IntE NMIE NMI
pend

SRstE Prob
En

Table 10-8 DCR Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

ENM 29

Endianess in which the processor is running in Kernel and Debug
Modes:

0: Little endian
1: Big endian

R Preset

DataBrk 17

Indicates if data hardware breakpoint is implemented:

0: No data hardware breakpoint implemented
1: Data hardware breakpoint implemented

R Preset

InstBrk 16

Indicates if instruction hardware breakpoint is implemented:

0: No instruction hardware breakpoint implemented
1: Instruction hardware breakpoint implemented

R Preset

IntE 4

Hardware and software interrupt enable for Non-Debug Mode, in
conjunction with other disable mechanisms:

0: Interrupt disabled
1: Interrupt enabled depending on other enabling mechanisms

R/W 1

NMIE 3

Non-Maskable Interrupt (NMI) enable for Non-Debug Mode:

0: NMI disabled
1: NMI enabled

R/W 1

NMIpend 2

Indicates pending NMI:

0: No NMI pending
1: NMI pending

R 0
170 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.4 Hardware Breakpoints

store
e debug
d are
nce is

o data

g is

res, and
ation

irtual
ess and
is
10.4 Hardware Breakpoints

The optional hardware breakpoints compare addresses and data of executed instructions, including data load/
accesses. Instruction breakpoints can be set even on addresses in ROM areas, and data breakpoints can caus
exceptions on specific data accesses. Instruction and data hardware breakpoints are alike in many aspects, an
described in parallel in the following sections. When the term “breakpoint” is used in this section, then the refere
to a “hardware breakpoint”, unless otherwise explicitly noted.

10.4.1 Introduction

When hardware breakpoints are included in the implementation, then there are four instruction breakpoints and tw
breakpoints. These breakpoints provide the following key features:

• Instruction breakpoints cause debug exceptions on executed instructions, both in ROM and RAM. Bit maskin
provided for virtual address compares; masking of compares with ASID (optional) is also provided.

• Data breakpoints cause debug exceptions on data accesses. Bit masking is provided for virtual address compa
masking of compares with ASID is provided. Data value compares allow masking at the byte level, and qualific
on byte access and access type is possible.

• Registers for setup and control are memory mapped in drseg, accessible in Debug Mode only.

The following subsections provide details of instruction and data breakpoints.

10.4.1.1 Instruction Breakpoint Overview

Figure 10-3shows a block diagram of the instruction breakpoint feature. This instruction breakpoint compares the v
address (PC) and the ASID of the executed instruction with each instruction breakpoint, applying masks on addr
ASID. When an enabled instruction breakpoint matches the PC and ASID, a debug exception and/or a trigger
generated, and an internal bit in an instruction breakpoint register is set to indicate that a match occurred.

SRstE 1

Controls soft reset enable:

0: Soft reset masked for soft rest sources dependent on implementation
1: Soft reset is fully enabled

Bit value is output on the processor signal EJ_SRstE.

R/W 1

ProbEn 0

Indicates value of the ProbEn value in the ECR register:

0: No access should occur to dmseg
1: Probe services accesses to dmseg

Reads as zero if Test Access Port (TAP) is not implemented.

R

Same
value as
ProbEn
in ECR

0
63:30,
28:18,
15:5

Must be written as zeros; return zeros on reads. 0 0

Table 10-8 DCR Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset
State

Name Bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 171

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

access
value

in a data
r trigger
rs later

points
rs shown

ory

tation
ered 0
Figure 10-3 Instruction Breakpoint

10.4.1.2 Data Breakpoint Features

Figure 10-4shows a block diagram of the data breakpoint feature. The data breakpoint compares the load or store
type (TYPE), the virtual address of the access (ADDR), the ASID, the accessed bytes (BYTELANE), and data
(DATA) with each data breakpoint, applying masks and/or qualifications on the access properties.

Figure 10-4 Data Breakpoint

When an enabled data breakpoint matches, a debug exception and/or a trigger is generated, and an internal bit
breakpoint register is set to indicate that a match occurred. The match is either precise (the debug exception o
occurs on the instruction that caused the breakpoint to match) or imprecise (the debug exception or trigger occu
in the program flow).

10.4.2 Overview of Instruction and Data Breakpoint Registers

The InstBrk and DataBrk bits in the DCR register indicate whether breakpoints are implemented or not. If no break
are implemented, then none of the registers associated with breakpoints are implemented; otherwise the registe
in Table 10-9 andTable 10-10 are implemented.

Section 10.4.2.1, "Instruction Breakpoint Register Summary" andSection 10.4.2.2, "Data Breakpoint Register
Summary" provide overviews of the instruction and data breakpoint registers, respectively. All registers are mem
mapped in the drseg segment and are 64 bits wide.

10.4.2.1 Instruction Breakpoint Register Summary

Table 10-9lists the Instruction Breakpoint registers. The Instruction Breakpoint Status register provides implemen
indication and status for instruction breakpoints in general. The 4 implemented instruction breakpoints are numb
to 3 for registers and breakpoints. The specific breakpoint number is indicated by “n”, and n is 0 to 3.

Table 10-9 Instruction Breakpoint Register Summary

Register
Mnemonic

Register Name and Description Reference

IBS Instruction Breakpoint Status SeeSection 10.4.6.1, "Instruction Breakpoint
Status (IBS) Register" on page 180

IBAn Instruction Breakpoint Address n SeeSection 10.4.6.2, "Instruction Breakpoint
Address n (IBAn) Register" on page 181

Instruction
Hardware

Breakpoint

Debug Exception

Trigger IndicationASID

PC

Data
Hardware

Breakpoint

TYPE

ASID
Debug Exception

Trigger Indication

ADDR

DATA

BYTELANE
172 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.4 Hardware Breakpoints

80

cation
ters and

ccess.
ed in

"
rs,
Instruction Breakpoint register addresses are shown inSection 10.4.6, "Instruction Breakpoint Registers" on page 1.

10.4.2.2 Data Breakpoint Register Summary

Table 10-10lists the Data Breakpoint Registers. The Data Breakpoint Status register provides implementation indi
and status for data breakpoints in general. The two implemented data breakpoints are numbered 0 and 1 for regis
breakpoints. The specific breakpoint number is indicated by “n” and n is 0 or 1.

Data Breakpoint register addresses are shown inSection 10.4.7, "Data Breakpoint Registers" on page 183.

10.4.3 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data a
These conditions are described in the following subsections. A breakpoint only matches for instructions execut
Non-Debug Mode, never due to instructions executed in Debug Mode.

The match of an enabled breakpoint generates a debug exception as described inSection 10.4.4, "Debug Exceptions from
Breakpoints" on page 177and/or a trigger indication as described inSection 10.4.5, "Breakpoints Used as Triggerpoints
on page 179. The BE and/or TE bits in the IBCn or DBCn registers enable the breakpoints for breaks and trigge
respectively.

IBMn Instruction Breakpoint Address Mask n SeeSection 10.4.6.3, "Instruction Breakpoint
Address Mask n (IBMn) Register" on page 181

IBASIDn Instruction Breakpoint ASID n SeeSection 10.4.6.4, "Instruction Breakpoint
ASID n (IBASIDn) Register" on page 182

IBCn Instruction Breakpoint Control n SeeSection 10.4.6.5, "Instruction Breakpoint
Control n (IBCn) Register" on page 182

Table 10-10 Data Breakpoint Register Summary

Register
Mnemonic

Register Name and Description Reference

DBS Data Breakpoint Status SeeSection 10.4.7.1, "Data Breakpoint Status
(DBS) Register" on page 184

DBAn Data Breakpoint Address n SeeSection 10.4.7.2, "Data Breakpoint
Address n (DBAn) Register" on page 185

DBMn Data Breakpoint Address Mask n
SeeSection 10.4.7.3, "Data Breakpoint
Address Mask n (DBMn) Register" on page
185

DBASIDn Data Breakpoint ASID n SeeSection 10.4.7.4, "Data Breakpoint ASID n
(DBASIDn) Register" on page 185

DBCn Data Breakpoint Control n SeeSection 10.4.7.5, "Data Breakpoint
Control n (DBCn) Register" on page 186

DBVn Data Breakpoint Value n SeeSection 10.4.7.6, "Data Breakpoint Value n
(DBVn) Register" on page 187

Table 10-9 Instruction Breakpoint Register Summary

Register
Mnemonic

Register Name and Description Reference
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 173

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

n

er
p, even
s from

re 0’s,
_match:

pared

ing the

ress of
s causing
 CACHE
10.4.3.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with the instructio
boundary address (the lowest address of a byte in the instruction) of every executed instruction. The instruction
breakpoint is also evaluated on addresses usually causing an Address Error exception, a TLB exception, or oth
exceptions. It is thereby possible to cause a Debug Instruction Break exception on the destination address of a jum
if a jump to that address would cause an Address Error exception. The breakpoint is not evaluated on instruction
speculative fetches or execution.

A match of an instruction breakpoint depends on a number of parameters, shown inTable 10-11. The fields in the
instruction breakpoint registers are in the form REGFIELD.

The equation that determines the match is shown below with “C”-like operators. In the equation, 0 means all bits a
and ~0 means all bits are 1’s. The widths are similar to the widths of the parameters. The match equation is IB

IB_match =
(! IBCn ASIDuse || (ASID = = IBASIDn ASID)) &&
((IBMn IBM | ~ (PC ^ IBAn IBA)) = = ~0)

The IB_match equation also applies when running in 32-bit addressing mode, in which case all 64 bits are com
between the PC and the IBAnIBA register.

The match indication for instruction breakpoints is always precise; that is, it is indicated on the instruction caus
IB_match to be true.

10.4.3.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with both the access add
every data access due to load/store instructions (including loads/stores of coprocessor registers) and the addres
address errors upon data access. Data breakpoints are not evaluated with addresses from PREF (prefetch) or
instructions.

A match of the data breakpoint depends on a number of parameters, shown inTable 10-12. The fields in the data
breakpoint registers are in the form REGFIELD.

Table 10-11 Instruction Breakpoint Condition Parameters

Parameter Description Width

ASID ASID field in EntryHi CP0 register. 8 bits

IBCnASIDuse

Use ASID value in compare for instruction breakpoint n:

0: Do not use ASID value in compare
1: Use ASID value in compare

1 bit

IBASIDnASID Conditional Instruction breakpoint n ASID value for comparing. 8 bits

PC Virtual address of instruction boundary or target for jump/branch. 64 bits

IBAnIBA Instruction breakpoint n address for compare with conditions. 64 bits

IBMnIBM

Instruction breakpoint n address mask condition:

0: Corresponding address bit compared
1: Corresponding address bit masked

64 bits
174 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.4 Hardware Breakpoints

 means

uations
The match equations are shown below with “C”-like operators. In the equation, 0 means all bits are 0’s, and ~0
all bits are 1’s. The bit widths are similar to the widths of the parameters.

DB_match is the overall match equation (the DB_addr_match, DB_no_value_compare, and DB_value_match eq
in the DB_match equation are defined below):

DB_match =
(((TYPE = = load) && ! DBCn NoLB) || ((TYPE = = store) && ! DBCn NoSB)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

DB_addr_match is defined as:
DB_addr_match =
(! DBCn ASIDuse || (ASID = = DBASIDn ASID)) &&

Table 10-12 Data Breakpoint Condition Parameters

Reference Description Width

TYPE Data access type is either load or store. (no width)

DBCnNoSB

Controls whether condition for data breakpoint is fulfilled on a store access:

0: Condition can be fulfilled on store access
1: Condition is never fulfilled on store access

1 bit

DBCnNoLB

Controls whether condition for data breakpoint is fulfilled on a load access:

0: Condition can be fulfilled on load access
1: Condition is never fulfilled on load access

1 bit

ASID ASID field in EntryHi CP0 register. 8 bits

DBCnASIDuse

ASID value used in compare for data breakpoint n:

0: Do not use ASID value in compare
1: Use ASID value in compare

1 bit

DBASIDnASID Conditional Data breakpoint n ASID value for comparison. 8 bits

ADDR Virtual address of data access. 64 bits

DBAnDBA Data breakpoint n address for compare with conditions. 64 bits

DBMnDBM

Conditional Data breakpoint n address mask:

0: Corresponding address bit compared
1: Corresponding address bit masked

64 bits

BYTELANE
Byte lane access indication, where BYTELANE[0] is 1 only if the byte at bits [7:0]
on the data bus is accessed, BYTELANE[1] is 1 only if the byte at bits [15:8] on
the data bus is accessed, etc.

8 bits

DBCnBAI

Determines whether access is ignored to specific bytes. BAI[0] ignores access to
byte at bits [7:0] of the data bus, BAI[1] ignores access to byte at bits [15:8] of the
data bus, etc.:

0: Condition depends on access to corresponding byte
1: Access for corresponding byte is ignored

8 bits

DATA Data value from the data bus. 64 bits

DBVnDBV Conditional Data breakpoint n data value for comparison. 64 bits

DBCnBLM

Conditional Byte lane mask for value compare on data breakpoint. BLM[0] masks
byte at bits [7:0] of the data bus, BLM[1] masks byte at bits [15:8], etc.:

0: Compare corresponding byte lane
1: Mask corresponding byte lane

8 bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 175

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

re

ta value
point if

e

sters for

 required

a load if
n a load

ut a bus
his case.

ctive
the
((DBMn DBM | ~ (ADDR ^ DBAn DBA)) = = ~0) &&
((~ DBCn BAI & BYTELANE) != 0)

The DB_addr_match equation also applies when running in 32-bit addressing mode, in which case all 64 bits a
compared between the ADDR and the DBAnDBA field.

DB_no_value_compare is defined as:
DB_no_value_compare =
((DBCn BLM | DBCn BAI | ~ BYTELANE) = = ~0)

If a data value compare is indicated on a breakpoint, then DB_no_value_compare is false, and if there is no da
compare then DB_no_value_compare is true. Note that a data value compare is a run-time property of the break
(DBCnBLM | DBCnBAI) is not ~0, because DB_no_value_compare then depends on BYTELANE provided by th
load/store instructions.

If a data value compare is required, then the data value from the data bus is compared and masked with the regi
the data breakpoint, as shown in the DB_value_match equation:

DB_value_match =
((DATA[7:0] = = DBVn DBV[7:0]) || ! BYTELANE[0] || DBCn BLM[0] || DBCn BAI[0]) &&
((DATA[15:8] = = DBVn DBV[15:8]) || ! BYTELANE[1] || DBCn BLM[1] || DBCn BAI[1]) &&
......
((DATA[63:56] = = DBVn DBV[63:56]) ||

! BYTELANE[7] || DBCn BLM[7] || DBCn BAI[7])

Data breakpoints depend on endianess, because values on the byte lanes are used in the equations. Thus it is
that the debug software programs the breakpoints accordingly to endianess.

A precise match for a data breakpoint always occurs on data breakpoints on a store and on data breakpoints on
there is no data value compare. An imprecise match for a data breakpoint always occurs on a data breakpoint o
with data value compare.

If a data value compare is required to evaluate a data breakpoint (the DB_no_value_compare equation is false), b
or cache error occurs on the load, then there is no valid data to use in the compare, and there will be no match in t

Unaligned addresses can result from explicit halfword, word, and doubleword accesses (for example, if an effe
address of 0x01 is used as source of a Load Halfword (LH) instruction). The ADDR used in the comparison is
effective address. The BYTELANE value is defined according toTable 10-13.

Table 10-13 BYTELANE Value at Unaligned Address

Size ADDR BYTELANE[7:0]

[2] [1] [0] Little Endian Big Endian

Halfword

0 0 x 000000112 110000002

0 1 x 000011002 001100002

1 0 x 001100002 000011002

1 1 x 110000002 000000112

Word
0 x x 000011112 111100002

1 x x 111100002 000011112

Doubleword x x x 111111112

‘x’ denotes don’t care.
176 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.4 Hardware Breakpoints

lue
alue

ores the
n a

etermine
bug

9
ccurs

e match

eption
n
ion.

to the

t cause
struction

he
e the
) in

n the

se, the
uation

oints
uctions.
With the above well-defined values of BYTELANE, the behavior is well-defined for data breakpoints without va
compares on operations with unaligned addresses. The BLM field in the DBCn register can be used to avoid v
compares if all BLM bits are set to 1.

If the data breakpoint depends on a value compare, then loads will cause an Address Error exception, and for st
data value (DATA) is UNPREDICTABLE. This UNPREDICTABLE data can cause match of a data breakpoint o
store, but an implementation can be configured to never indicate a match on data breakpoints in this case.

If a debug exception is taken on the store then the debug handler can investigate the processor state and thereby d
if the address was unaligned and UNPREDICTABLE store data for the memory access thereby caused the de
exception. If a debug exception is not taken for the store, then an Address Error exception is taken.

If the data breakpoint is used as a triggerpoint (seeSection 10.4.5, "Breakpoints Used as Triggerpoints" on page 17)
then a BS bit might be set after a compare with UNPREDICTABLE data; however, an Address Error exception o
in this case.

10.4.4 Debug Exceptions from Breakpoints

This subsection describes how to set up instruction and data breakpoints to generate debug exceptions when th
conditions are true.

10.4.4.1 Debug Exception Caused by Instruction Breakpoint

When the BE bit in the IBCn register is set, instruction breakpoints are enabled. A Debug Instruction Break exc
occurs when the IB_match equation is true (seeSection 10.4.3.1, "Conditions for Matching Instruction Breakpoints" o
page 174). The corresponding BS bit in the IBS register is set when the breakpoint generates the debug except

The Debug Instruction Break exception is precise, so the DEPC register and DBD bit in the Debug register point
instruction that caused the IB_match equation to be true. Refer toSection 6.21, "Debug Exception Program Counter
Register (CP0 Register 24, Select 0)" on page 129.

The instruction receiving the debug exception only updates the debug-related registers. That instruction will no
any loads/stores to occur. Thus a debug exception from a data breakpoint cannot occur at the same time an in
receives a Debug Instruction Break exception.

The debug handler usually returns to the instruction causing the Debug Instruction Break exception, whereby t
instruction is executed. Debug software must disable the breakpoint when returning to the instruction, otherwis
Debug Instruction Break exception will reoccur. An alternative is for debug software to emulate the instruction(s
software and change the DEPC accordingly.

10.4.4.2 Precise Debug Exception Caused by Data Breakpoint

The BE bit in the DBCn register must be set for data breakpoints to be enabled. A debug exception occurs whe
DB_match condition is true (seeSection 10.4.3.2, "Conditions for Matching Data Breakpoints" on page 174).

A Debug Data Break Load/Store exception occurs when a data breakpoint indicates a precise match. In this ca
DEPC register and DBD bit in the Debug register point to the load/store instruction that caused the DB_match eq
(seeSection 10.4.3.2, "Conditions for Matching Data Breakpoints" on page 174) to be true, and the corresponding BS
bit in the DBS register is set. For the 5K processor, these precise debug exceptions only occur for data breakp
without data value compare on load instructions and both with and without a data value compare on store instr
Table 10-14 shows details about behavior of the instruction causing the debug exception.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 177

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

ccess

bits.

hereby
ise the
ion in

n the

is case,
at the
ly occur

register
rn from
The rules shown inTable 10-15 describe updates of the BS bits when several data breakpoints match the same a
and generate a debug exception.

Any BS bit set prior to the match and debug exception is kept set, since only debug software can clear the BS

The debug handler usually returns to the instruction that caused the Debug Data Break Load/Store exception, w
the instruction is re-executed. Debug software must disable breakpoints when returning to the instruction, otherw
Debug Data Break Load/Store exception will reoccur. An alternative is for debug software to emulate the instruct
software and change the DEPC accordingly.

10.4.4.3 Imprecise Debug Exception Caused by Data Breakpoint

The BE bit in the DBCn register must be set for data breakpoints to be enabled. A debug exception occurs whe
DB_match condition is true (seeSection 10.4.3.2, "Conditions for Matching Data Breakpoints" on page 174).

A Debug Data Break Load Imprecise exception occurs when a data breakpoint indicates an imprecise match. In th
the DEPC register and DBD bit in the Debug register point to an instruction later in the execution flow rather than
load that caused the DB_match equation to be true. For the 5K processor, these imprecise debug exceptions on
for data breakpoints with data value compares on load instructions.

The load instruction causing the Debug Data Break Load Imprecise exception always updates the destination
and finalizes the access to the external memory system. Therefore this load instruction is not re-executed on retu
the debug handler, because the DEPC register and DBD bit do not point to that instruction.

Table 10-14 Behavior on Precise Exceptions from Data Breakpoints

Data Breakpoint and
Instruction

Load/Store
Instruction Execution

Destination
Register

External Memory System Access

Store wo/w value match
Not completed

Not updateda

a. Applies to the Store Conditional Word/Double (SC/SCD) instructions

Store to memory is not committed

Load without value match Not updatedb

b. Includes side effects like for the Load Linked Word/Double (LL/LLD) instructions

Load from memory does not occur

Table 10-15 Rules for Updating BS Bits on Precise Exceptions from Data Breakpoints

Instruction Breakpoints That Match... Update of BS Bits for Matching Data Breakpoints

Without Value
Compare

With Value
Compare

Without Value Compare With Value Compare

Load / Store One or more None BS bits set for all (No matching breakpoints)

Load One or more One or more BS bits set for all

Unchanged BS bits since
load of data value does not
occur, so match of the
breakpoint cannot be
determined

Load None One or more (No matching breakpoints)

Covered by imprecise debug
exception, seeSection
10.4.4.3, "Imprecise Debug
Exception Caused by Data
Breakpoint" on page 178.

Store One or more One or more BS bits set for all BS bits set for all

Store None One or more (No matching breakpoints) BS bits set for all
178 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.4 Hardware Breakpoints

valuated
a debug
e match
nerated

g two
s that

 BS bits.

a debug
ether
s under

must

r lower
tching
ction.
he case

pare
74
Imprecise data breakpoints can be pending due to an outstanding scheduled load. The breakpoints are then e
when the access finalizes, and a Debug Data Break Load Imprecise exception is generated, if there is a match. If
exception had already occurred at the time of the match (for example, due to a precise debug exception), then th
from the scheduled load causes the corresponding BS and DDBLImpr bits to be set, but no debug exception is ge
since the processor is already in Debug Mode.

The debug handler is required to execute the SYNC instruction, followed by two cycles spacing (for example, usin
SSNOP instructions), before the BS and DDBLImpr bits are accessed for reading or writing. This delay ensure
these bits are fully updated.

All BS bits set prior to the match and debug exception are kept set, because only debug software can clear the

10.4.5 Breakpoints Used as Triggerpoints

Software can set up both instruction and data breakpoints such that a matching breakpoint does not generate
exception, but sends an indication through the BS bit only. The TE bit in the IBCn or DBCn register controls wh
an instruction or data breakpoint, respectively, is used as a triggerpoint. Triggerpoints are evaluated for matche
the same criteria as breakpoints.

The BS bit in the IBS or DBS register is set for a triggerpoint when the respective IB_match condition (seeSection
10.4.3.1, "Conditions for Matching Instruction Breakpoints" on page 174) or DB_match condition (seeSection 10.4.3.2,
"Conditions for Matching Data Breakpoints" on page 174) is true.

For the BS bit to be set for an instruction triggerpoint, either the instruction must be fully executed or an exception
occur on the instruction.

The BS bit for a data triggerpoint can only be set if no exception with higher priority than the Debug Data Break
Load/Store exception with address match only occurred on the load/store instruction. For exceptions with equal o
priority than the Debug Data Break Load/Store exception with address match only, the BS bits are still set for a ma
triggerpoint. For example, the BS bit is set even if a TLB or Bus Error exception occurred on the load/store instru
Data triggerpoints with value compares require the data value to be valid for the BS bit to be set, which is not t
if, for example, a TLB or Bus Error exception occurs on a load instruction. However, for stores, the trigger can com
on UNPREDICTABLE data as described inSection 10.4.3.2, "Conditions for Matching Data Breakpoints" on page 1.

Table 10-16 shows the rules for updating the BS bits.

Data breakpoints with imprecise matches generate imprecise triggers when enabled by the TE bit.

Table 10-16 Rules for Updating BS Bits on Data Triggerpoints

Instruction Without/With Value Compare BS Bits Update for Triggerpoint

Load / Store Without data value compare
BS bit is set if no exception with higher priority than the Debug
Data Break Load/Store exception with address match only
occurred on the instruction.

Load With data value compare
BS bit is set if no exception with higher priority than the Debug
Data Break Load exception with address + data value match
occurred on the instruction.

Store With data value compare

BS bit is set if no exception with higher priority than the Debug
Data Break Load/Store exception with address match only
occurred on the instruction.

Note that setting the BS bit is UNPREDICTABLE for a data
triggerpoint with a data value compare, in case an unaligned
address results from the store data access, seeSection 10.4.3.2,
"Conditions for Matching Data Breakpoints" on page 174.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 179

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

e
gisters

truction
isters
ode,

ion

32

0

10.4.6 Instruction Breakpoint Registers

This subsection describes the instruction breakpoint registers. These registers provide status and control for th
instruction breakpoints. All registers are in drseg. The four implemented breakpoints are numbered 0 to 3 for re
and breakpoints. The specific breakpoint number is indicated by “n”, with n in 0 to 3.Table 10-17 shows the registers
and their respective address offsets.

To remove hazards when updating instruction breakpoint registers, the debug handler must execute the SYNC ins
followed by two cycles spacing (for example, using two SSNOPs) after writing to the instruction breakpoint reg
and before leaving Debug Mode. This procedure ensures that the registers are fully updated for Non-Debug M
otherwise behavior of the processor is UNDEFINED.

10.4.6.1 Instruction Breakpoint Status (IBS) Register

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruct
breakpoints. It is located at drseg offset 0x1000. The ASIDsup bit applies to all instruction breakpoints.Figure 10-5
shows the format of the IBS register;Table 10-18 describes the IBS register fields.

Figure 10-5 IBS Register Format

Table 10-17 Instruction Breakpoint Register Mapping

Offset in drseg Register
Mnemonic

Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + 0x100 * n IBAn Instruction Breakpoint Address n

0x1108 + 0x100 * n IBMn Instruction Breakpoint Address Mask n

0x1110 + 0x100 * n IBASIDn Instruction Breakpoint ASID n

0x1118 + 0x100 * n IBCn Instruction Breakpoint Control n

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 ASIDsup 0 BCN 0 BS[3:0]

Table 10-18 IBS Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

ASIDsup 30

Indicates if ASID compare is supported in instruction breakpoints:

0: No ASID compare
1: ASID compare (IBASIDn register implemented)

ASID support indication does not guarantee a TLB-type MMU,
because the same breakpoint implementation can be used with
processors having all different types of MMUs.

R 1

BCN 27:24

Number of instruction breakpoints implemented:

0: Reserved
1-15: Number of instructions breakpoints

R 4
180 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.4 Hardware Breakpoints

oint n.

on for
offset

32

0

32

0

10.4.6.2 Instruction Breakpoint Address n (IBAn) Register

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakp
It is located at drseg offset 0x1100 + 0x100 * n.Figure 10-6shows the format of the IBAn register;Table 10-19describes
the IBAn register field.

Figure 10-6 IBAn Register Format

10.4.6.3 Instruction Breakpoint Address Mask n (IBMn) Register

The Instruction Breakpoint Address Mask n (IBMn) register has the address compare mask used in the conditi
instruction breakpoint n. The address that is masked is in the IBAn register. The IBMn register is located at drseg
0x1108 + 0x100 * n.Figure 10-7shows the format of the IBMn register;Table 10-20describes the IBMn register field.

Figure 10-7 IBMn Register Format

BS[3:0] 3:0

Break Status (BS) bit for breakpoint n is at BS[n], where n is 0 to
3. A bit is set to 1 when the condition for its corresponding
breakpoint has matched.

The number of BS bits corresponds to the number of breakpoints
indicated by the BCN field.

Debug software is expected to clear the bits before use, because
reset does not clear these bits.

R/W0 Undefined

0
63:31,
29:28,
23:4

Must be written as zeros; return zeros on read. 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

IBAn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

IBAn

Table 10-19 IBAn Register Field Descriptions

Fields
Description

Read/
Write

Reset
State

Name Bits

IBA 63:0 Instruction breakpoint address for condition. R/W Undefined

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

IBMn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

IBMn

Table 10-18 IBS Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset
State

Name Bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 181

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

point,

32

0

10.4.6.4 Instruction Breakpoint ASID n (IBASIDn) Register

The Instruction Breakpoint ASID n (IBASIDn) register has the ASID value used in the compare for instruction
breakpoint n. It is located at drseg offset 0x1110 + 0x100 * n.

Figure 10-8 shows the format of the IBASIDn register;Table 10-21 describes the IBASIDn register fields.

Figure 10-8 IBASIDn Register Format

10.4.6.5 Instruction Breakpoint Control n (IBCn) Register

The Instruction Breakpoint Control n (IBCn) register determines what constitutes instruction breakpoint n: trigger
breakpoint, ASID value inclusion. This register is located at drseg offset 0x1118 + 0x100 * n.Figure 10-9 shows the
format of the IBCn register;Table 10-21 describes the IBCn register fields.

Table 10-20 IBMn Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

IBM 63:0

Instruction breakpoint address mask for condition:

0: Corresponding address bit compared
1: Corresponding address bit masked

R/W Undefined

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 ASID

Table 10-21 IBASIDn Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

ASID 7:0 Instruction breakpoint ASID value for compare. R/W Undefined

0 63:8 Must be written as zeros; return zeros on read. 0 0
182 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.4 Hardware Breakpoints

nd
tive

32

0

Figure 10-9 IBCn Register Format

10.4.7 Data Breakpoint Registers

This subsection describes the data breakpoint registers. These registers provide status and control for the data
breakpoints. All registers are in drseg. The two implemented breakpoints are numbered 0 and 1 for registers a
breakpoints. The specific breakpoint number is indicated by “n”, with n as 0 or 1. The registers and their respec
addresses offsets are shown inTable 10-23.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 ASIDuse 0 TE 0 BE

Table 10-22 IBCn Register Field Descriptions

Fields
Description

Read/
Write

Reset
State

Name Bits

ASIDuse 23

Use ASID value in compare for instruction breakpoint n:

0: Do not use ASID value in compare
1: Use ASID value in compare

Debug software must only set ASIDuse if a TLB in the
implementation is used by the application software.

R/W Undefined

TE 2

Use instruction breakpoint n as triggerpoint:

0: Do not use it as triggerpoint
1: Use it as triggerpoint

R/W 0

BE 0

Use instruction breakpoint n as breakpoint:

0: Do not use it as breakpoint
1: Use it as breakpoint

R/W 0

0 63:24,
22:3, 1 Must be written as zeros; return zeros on read. 0 0

Table 10-23 Data Breakpoint Register Mapping

Offset in drseg Register
Mnemonic

Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 183

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

ction
 two
r of the

oints. It
ts.

32

0

To remove hazards when updating data breakpoint registers, the debug handler must execute the SYNC instru
followed by at least two cycles in Debug Mode after writing to the data breakpoint registers (for example, using
SSNOPs). This procedure ensures that the registers are fully updated for Non-Debug Mode; otherwise behavio
processor is UNDEFINED.

10.4.7.1 Data Breakpoint Status (DBS) Register

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakp
is located at drseg offset 0x2000. The ASIDsup, NoSVmatch, and NoLVmatch fields apply to all data breakpoin
Figure 10-10 shows the format of the DBS register;Table 10-24 describes the DBS register fields.

Figure 10-10 DBS Register Format

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 ASIDsup NoSVmatch NoLVmatch BCN 0 BS[1:0]

Table 10-24 DBS Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

ASIDsup 30

Indicates if ASID compare is supported in data breakpoints:

0: No ASID compare
1: ASID compare (DBASIDn register implemented)

ASID support indication does not guarantee a TLB-type MMU,
because the same breakpoint implementation can be used with
processors having all different types of MMUs.

R 1

NoSVmatch 29

Indicates if a value compare on a store is supported in data
breakpoints:

0: Data value and address in condition on store
1: Address compare only in condition on store

R 0

NoLVmatch 28

Indicates if a value compare on a load is supported in data
breakpoints:

0: Data value and address in condition on load
1: Address compare only in condition on load

R 0

BCN 27:24

Number of data breakpoints implemented:

0: Reserved
1-15: Number of data breakpoints

R 2

BS[1:0] 1:0

Break Status (BS) bit for breakpoint n is at BS[n], where n is 0 or
1. The bit is set to 1 when the condition for its corresponding
breakpoint has matched.

The number of BS bits implemented corresponds to the number of
breakpoints indicated by the BCN bit.

Debug software must clear these bits before use, because they are
not cleared by reset.

R/W0 Undefined

0 63:31,
23:2 Must be written as zeros; return zeros on read. 0 0
184 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.4 Hardware Breakpoints

register

 data
 0x2108

. It is

32

0

32

0

10.4.7.2 Data Breakpoint Address n (DBAn) Register

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n. This
is located at drseg offset 0x2100 + 0x100 * n.Figure 10-11shows the format of the DBAn register;Table 10-25describes
the DBAn register field.

Figure 10-11 DBAn Register Format

10.4.7.3 Data Breakpoint Address Mask n (DBMn) Register

The Data Breakpoint Address Mask n (IBMn) register has the address compare mask used in the condition for
breakpoint n. The address that is masked is in the DBAn register. The DBMn register is located at drseg offset
+ 0x100 * n.Figure 10-12 shows the format of the DBMn register;Table 10-26 describes the DBMn register field.

Figure 10-12 DBMn Register Format

10.4.7.4 Data Breakpoint ASID n (DBASIDn) Register

The Data Breakpoint ASID n (DBASIDn) register has the ASID value used in the compare for data breakpoint n
located at drseg offset 0x2110 + 0x100 * n.

Figure 10-13 shows the format of the DBASIDn register;Table 10-27 describes the DBASIDn register fields.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

DBAn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

DBAn

Table 10-25 DBAn Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

DBA 63:0 Data breakpoint address for condition R/W Undefined

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

DBMn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

DBMn

Table 10-26 DBMn Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

DBMn 63:0

Data breakpoint address mask for condition:

0: Corresponding address bit compared
1: Corresponding address bit masked

R/W Undefined
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 185

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

kpoint,
t drseg

32

0

32

0

Figure 10-13 DBASIDn Register Format

10.4.7.5 Data Breakpoint Control n (DBCn) Register

The Data Breakpoint Control n (DBCn) register determines what constitutes data breakpoint n: triggerpoint, brea
ASID value inclusion, load/store access fulfillment, ignore byte access, byte lane mask. This register is located a
offset 0x2118 + 0x100 * n.Figure 10-14shows the format of the DBCn register;Table 10-28describes the DBCn register
fields.

Figure 10-14 DBCn Register Format

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 ASID

Table 10-27 DBASIDn Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

ASID 7:0 Data breakpoint ASID value for compare. R/W Undefined

0 63:8 Must be written as zeros; return zeros on read. 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 ASIDuse 0 BAI[7:0] NoSB NoL
B

BLM[7:0] 0 TE 0 BE

Table 10-28 DBCn Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

ASIDuse 23

Use ASID value in compare for data breakpoint n:

0: Do not use ASID value in compare
1: Use ASID value in compare

Debug software must only set ASIDuse if a TLB in the
implementation is used by the application software.

R/W Undefined

BAI[7:0] 21:14

Byte access ignore. Controls ignore of access to specific bytes.
BAI[0] ignores access to byte at bits [7:0] of the data bus, BAI[1]
ignores access to byte at bits [15:8], etc.:

0: Condition depends on access to corresponding byte
1: Access for corresponding byte is ignored

Debug software must adjust for endianess when programming this
field.

R/W Undefined
186 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.4 Hardware Breakpoints

ated at

32

0

10.4.7.6 Data Breakpoint Value n (DBVn) Register

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n. It is loc
drseg offset 0x2120 + 0x100 * n.Figure 10-15shows the format of the DBVn register;Table 10-29describes the DBVn
register field.

Figure 10-15 DBVn Register Format

NoSB 13

Controls whether condition for data breakpoint is ever fulfilled on
a store access:

0: Condition can be fulfilled on store access
1: Condition is never fulfilled on store access

R/W Undefined

NoLB 12

Controls whether condition for data breakpoint is ever fulfilled on
a load access:

0: Condition can be fulfilled on load access
1: Condition is never fulfilled on load access

R/W Undefined

BLM[7:0] 11:4

Byte lane mask for value compare on data breakpoint. BLM[0]
masks byte at bits [7:0] of the data bus, BLM[1] masks byte at bits
[15:8], etc.:

0: Compare corresponding byte lane
1: Mask corresponding byte lane

Debug software must adjust for endianess when programming this
field.

R/W Undefined

TE 2

Use data breakpoint n as triggerpoint:

0: Do not use it as triggerpoint
1: Use it as triggerpoint

R/W 0

BE 0

Use data breakpoint n as breakpoint:

0: Do not use it as breakpoint
1: Use it as breakpoint

R/W 0

0 63:24, 22,
3, 1 Must be written as zeros; return zeros on read. 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

DBVn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

DBVn

Table 10-28 DBCn Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset
State

Name Bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 187

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

in the
ccess to

cesses,

ehaves

 the
10.5 EJTAG Test Access Port

This section describes the EJTAG features provided when the optional EJTAG Test Access Port (TAP) is included
implementation. The features are described in terms of the TAP Instruction register and data registers, where a
these registers through the 5K core TAP interface is described in the “EJTAG Interface” chapter of theMIPS64 5K
Processor Core Family Integrator’s Guide.

The overall features of the EJTAG Test Access Port (TAP) are:

• Identification of device and EJTAG debug features accessed through the TAP

• EJTAG memory is in dseg, which provides a memory-mapped area handled by the probe through processor ac
whereby the processor can execute a debug handler not present in the system memory

• Reset handling allows debug exception immediately after reset

• Debug interrupt request from probe

• Low-power mode indications

• Implementation-dependent processor and peripheral reset

If the TAP is not implemented, then other features depending on register values and indications from the TAP b
as if these register values and indications have the power-up and reset values.

Note that all references to reset apply to processor reset or soft reset, unless otherwise explicitly stated.

10.5.1 Instruction Register and Special Instructions

The Instruction register controls selection of accessed data register(s), and controls the setting and clearing of
EJTAGBOOT indication.

The Instruction register is five bits wide.Table 10-30 shows the allocation of the TAP instruction.

Table 10-29 DBVn Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

DBV 63:0

Data breakpoint data value for condition.

Debug software must adjust for endianess when
programming this field.

R/W Undefined

Table 10-30 TAP Instruction Overview

Code Instruction Function

0x01 IDCODE Selects Device Identification (ID) register

0x03 IMPCODE Selects Implementation register

0x08 ADDRESS Selects Address register

0x09 DATA Selects Data register

0x0A CONTROL Selects EJTAG Control register

0x0B ALL Selects the Address, Data, and EJTAG Control registers
188 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.5 EJTAG Test Access Port

r, as
OOT

apter
he

eption
nternal
nd soft

. The
The instructions IDCODE, IMPCODE, ADDRESS, DATA, CONTROL, and BYPASS select a single data registe
indicated in the table. The unused instructions select the Bypass register. The ALL, EJTAGBOOT, and NORMALB
instructions are described in the following subsections.

Any EJTAGBOOT indication must be cleared at power-up through a reset of the TAP. The “EJTAG Interface” ch
of theMIPS64 5K Processor Core Family Integrator’s Guidedescribes how this TAP reset must be performed using t
EJ_TRST_N signal. At the TAP reset, the Instruction register is loaded with the IDCODE instruction.

10.5.1.1 ALL Instruction

The Address, Data and EJTAG Control data registers are selected at once with the ALL instruction, as shown inFigure
10-16, with connection between the TDI and TDO signals.

w

Figure 10-16 Selected Registers when ALL Instruction is Selected

10.5.1.2 FASTDATA Instruction

The Data and Fastdata registers are selected with the FASTDATA instruction, as shown inFigure 10-17, with connection
between the TDI and TDO signals.

Figure 10-17 Selected Registers when FASTDATA Instruction is Selected

10.5.1.3 EJTAGBOOT and NORMALBOOT Instructions

The EJTAGBOOT and NORMALBOOT instructions control whether the processor takes a Debug Interrupt exc
after reset with execution of the debug handler from the probe, or if it executes the reset handler as usual. An i
EJTAGBOOT indication holds information on the action to take at a processor reset, which applies to both reset a
reset.

The internal EJTAGBOOT indication is set when the EJTAGBOOT instruction takes effect in the Update-IR state
indication is cleared when the NORMALBOOT instruction takes effect in the Update-IR state, or when the
Test-Logic-Reset state is entered (for example, when EJ_TRST_N signal is asserted low).

0x0C EJTAGBOOT Makes the processor take a debug exception after reset

0x0D NORMALBOOT Makes the processor execute the reset handler after reset

0x0E FASTDATA Selects the Data and Fastdata registers

0x1F BYPASS Selects Bypass register

Table 10-30 TAP Instruction Overview (Continued)

Code Instruction Function

TDI
Address register EJTAG Control registerData register

TDO

MSB 0 / LSBMSB 0 / LSB MSB 0 / LSB

TDI Fastdata registerData register TDO

MSB 0 / LSB 0
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 189

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

wer-up

ion.
handler

ute the
rantees

e

The internal EJTAGBOOT indication is cleared at power-up, so the processor executes the reset handler after po
unless the EJTAGBOOT instruction is given through the TAP.

The Bypass register is selected when the EJTAGBOOT or NORMALBOOT instruction is given.

The EjtagBrk, ProbEn, and ProbTrap bits in the EJTAG Control register follow the internal EJTAGBOOT indicat
They are all set at processor reset if a Debug Interrupt exception is to be generated, with execution of the debug
from the probe.

When an EJTAGBOOT instruction is indicated at reset, then it is possible to take the debug exception and exec
debug handler from the probe even if no instructions can be fetched from the reset handler. This condition gua
that the system will not hang in this type of case.

10.5.2 TAP Data Registers

Table 10-31 summarizes the data registers in the TAP. Complete descriptions of these registers are located in th
following subsections.

Table 10-31 EJTAG TAP Data Registers

Instruction Used
to Access Register

Register
Name

Function Reference

IDCODE Device ID

Identifies device and accessed processor in the
device.

SeeSection 10.5.2.1,
"Device Identification
(ID) Register (TAP
Instruction IDCODE)"
on page 191

IMPCODE Implementation

Identifies main debug features implemented
and accessible through the TAP.

SeeSection 10.5.2.2,
"Implementation
Register (TAP
Instruction
IMPCODE)" on page
192

DATA, FASTDATA
or ALL

Data

Data register for processor access.

SeeSection 10.5.2.3,
"Data Register (TAP
Instruction DATA,
FASTDATA or ALL)"
on page 193

ADDRESS or ALL Address

Address register for processor access.

SeeSection 10.5.2.4,
"Address Register (TAP
Instruction ADDRESS
or ALL)" on page 195

CONTROL or ALL EJTAG Control

Control register for most EJTAG features used
through the TAP.

SeeSection 10.5.2.5,
"EJTAG Control
Register (ECR) (TAP
Instruction CONTROL
or ALL)" on page 196

FASTDATA Fastdata

Fastdata register for fast processor access
handling.

SeeSection 10.5.2.6,
"Fastdata Register (TAP
Instruction
FASTDATA)" on page
200
190 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.5 EJTAG Test Access Port

egister

pecified,
ed, then

gister

t

0

A read of a data register corresponds only to the Capture-DR state of the TAP controller, and a write of the data r
corresponds to the Update-DR state only.

The initial states of these registers are specified with either a reset state or a power-up state. If a reset state is s
then the indicated value is applied to the register when a processor reset is applied. If a power-up state is specifi
the indicated value is applied at power-up reset.

EJ_TCK does not have to be running in order for a processor reset to reset the registers.

10.5.2.1 Device Identification (ID) Register (TAP Instruction IDCODE)

The Device ID register is a 32-bit read-only register that identifies the specific device implementing EJTAG. This re
is also defined in IEEE 1149.1. The Device ID register holds a unique number among different devices with
EJTAG-compliant processors implemented. It is recommended that the register is also unique amongst differen
EJTAG-compliant processors in the same device.

Figure 10-18 shows the format of the Device ID register;Table 10-32 describes the Device ID register fields.

Figure 10-18 Device ID Register Format

BYPASS,
EJTAGBOOT,

NORMALBOOT, or
unused EJTAG

instructions

Bypass

Provides a one-bit shift path through the TAP.

SeeSection 10.5.2.7,
"Bypass Register (TAP
Instruction BYPASS,
EJTAGBOOT,
NORMALBOOT, or
Unused)" on page 201

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Version PartNumber ManufID 1

Table 10-32 Device ID Register Field Descriptions

Fields Description Read/
Write

Power-up
State

Name Bits

Version 31:28

Identifies the version of a specific device.

The value in this field must be unique for particular values of
Manufacturer ID and Part Number values. The value identifies a
specific revision of the design (such as a sequence of bug fixes
within the same major design). The value is assigned by the design
house.

R Preset

Part
Number 27:12

Identifies the part number of a specific device.

The value in this field must be unique for a particular Manufacturer
ID value.

Design houses wishing to use the MIPS Technologies, Inc.
Manufacturer ID can request assignment of a group of Part
Numbers. Once the numbers are assigned, the design house then
manages those numbers. Assignment of Part Numbers within
another Manufacturer ID value is done by the owner of that
Manufacturer ID.

R Preset

Table 10-31 EJTAG TAP Data Registers (Continued)

Instruction Used
to Access Register

Register
Name

Function Reference
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 191

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

pliant
10.5.2.2 Implementation Register (TAP Instruction IMPCODE)

The Implementation register is a 32-bit read-only register that identifies features implemented in this EJTAG com
processor, mainly those accessible from the TAP.Figure 10-19 shows the format of the Implementation register;Table
10-33 describes the Implementation register fields.

Figure 10-19 Implementation Register Format

ManufID 11:1

Identifies the manufacturer identity code of a specific device,
which identifies the design house implementing the processor.

According to IEEE 1149.1-1990 section 11.2, the manufacturer
identity code is a compressed form of a JEDEC standard
manufacturer’s identification code in the JEDEC Publications 106,
which can be found at:
http://www.jedec.org/

ManufID[6:0] are derived from the last byte of the JEDEC code
with the parity bit discarded. ManufID[10:7] provide a binary
count of the number of bytes in the JEDEC code that contains the
continuation character (0x7F). When the number of continuation
characters exceeds 15, these four bits contain the modulo-16 count
of the number of continuation characters.

If the design house does not have a JEDEC Standard
Manufacture’s Identification Code, which is encoded for use in
this field, the design house can request use of the MIPS
Technologies, Inc. assigned number, or use the number assigned to
the core provider. Use of the MIPS Technologies, Inc. number
requires prior approval of the Director, MIPS Architecture.

The MIPS Technologies, Inc. Standard Manufacturer's
Identification Code is 0x127.

R Preset

1 0 Ignored on write; returns one on read. R 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EJTAGver R4k/R3k 0 DINTsup 0 ASIDsize 0 MIPS16 0 NoDMA 0 MIPS32/64

Table 10-33 Implementation Register Field Descriptions

Fields Description Read/
Write

Power-up
State

Name Bits

EJTAGver 31:29

Indicates the EJTAG version implemented. Se encoding
description in the EJTAGver field in the CP0 Debug register
Section 6.20, "Debug Register (CP0 Register 23, Select 0)" on
page 126.

R

Same as for
EJTAGver in
CP0 Debug

register.

DINTsup 24

Indicates support for the DINT signal from the probe:

0: DINT signal from the probe is not supported by this chip
1: Probe can use DINT signal to make debug interrupt on this
 chip

R

Determined
by the

EJ_DINTsup
signal

Table 10-32 Device ID Register Field Descriptions (Continued)

Fields Description Read/
Write

Power-up
State

Name Bits
192 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.5 EJTAG Test Access Port

 Data

register
ad is
at the

32

0

10.5.2.3 Data Register (TAP Instruction DATA, FASTDATA or ALL)

The read/write Data register is used for opcode and data transfers during processor accesses. The width of the
register is 64 bits.

The value read in the Data register is valid only if a processor access for a write is pending, in which case the data
holds the store value. The value written to the Data register is only used if a processor access for a pending re
finished afterwards, in which case the data value written is the value for the fetch or load. This behavior implies th
Data register is not a memory location where a previously written value can be read afterwards.

Figure 10-20 shows the format of the Data register;Table 10-34 describes the Data register field.

Figure 10-20 Data Register Format

ASIDsize 22:21

Indicates size of the ASID field:

0: No ASID in implementation
1: 6-bit ASID
2: 8-bit ASID
3: Reserved

R 2

MIPS16 16

Indicates MIPS16™ ASE support in the processor:

0: No MIPS16 ASE support
1: MIPS16 ASE is supported

R 0

NoDMA 14

Indicates no EJTAG DMA support:

0: Reserved
1: No EJTAG DMA support

R 1

MIPS32/64 0

Indicates 32-bit or 64-bit processor:

0: 32-bit processor
1: 64-bit processor

R 1

0
28:25, 23,
20:17, 15,

13:1
Ignored on writes; return zeros on reads. R 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Data

Table 10-34 Data Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

Data 63:0 Data used by processor access. R/W Undefined

Table 10-33 Implementation Register Field Descriptions (Continued)

Fields Description Read/
Write

Power-up
State

Name Bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 193

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

system.

ccess read

m the
 to bits
(DCR),
The contents of the Data register are not aligned but hold data as it is seen on a data bus for an external memory
Thus the bytes are positioned in the Data register based on access size, address, and endianess.

The bytes not accessed for a processor access write are undefined, and the bytes not accessed for a processor a
can be written with any value by the probe shifting the value into the Data register.

Table 10-35shows the byte positioning using the three LSBs of the Address register together with the Psz field fro
EJTAG Control register. Byte 0 refers to bits 7:0, byte 1 refers to bits 15:8, and so on up to byte 7, which refers
63:56, independent of endianess. The endianess is indicated through the ENM bit in the Debug Control Register
seeSection 10.3, "Debug Control Register" on page 169.
194 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.5 EJTAG Test Access Port

ds to the
10.5.2.4 Address Register (TAP Instruction ADDRESS or ALL)

The read-only Address register provides the address for a processor access. The width of the register correspon
size of the physical address in the processor implementation, which is 36 bits.

The value read in the register is valid if a processor access is pending, otherwise the value is undefined.

Table 10-35 Data Register Contents

Psz
from
ECR

Size Address[2:0] Little Endian Big Endian

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 Byte

0002

0012

0102

0112

1002

1012

1102

1112

1 Halfword

0002

0102

1002

1102

2

Word 0002

5-byte/Quinti 0012

6-byte/Sexti 0102

7-byte/Septi 0112

Word 1002

5-byte/Quinti 1012

6-byte/Sexti 1102

7-byte/Septi 1112

3
Triple

0002

0102

1002

1102

Doubleword 1112

Reserved n.a. n.a.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 195

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

d data
d by the

ation,

either
er a reset.

clock
e two

.

0

0

The three LSBs of the register are used with the Psz field from the EJTAG Control register to indicate the size an
position of the pending processor access transfer. These bits are not taken directly from the address reference
load/store. SeeSection 10.5.2.3, "Data Register (TAP Instruction DATA, FASTDATA or ALL)" on page 193 for more
details.Figure 10-21 shows the format of the Address register;Table 10-36 describes the Address register field.

Figure 10-21 Address Register Format

10.5.2.5 EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)

The 32-bit EJTAG Control Register (ECR) handles processor reset and soft reset indication, Debug Mode indic
access start, finish, and size and read/write indication. The ECR also:

• controls debug vector location and indication of serviced processor accesses,

• allows a debug interrupt request,

• indicates processor low-power mode, and

• allows implementation-dependent processor and peripheral resets.

The EJTAG Control register is not updated/written in the Update-DR state unless the Reset occurred (Rocc) bit is
already 0 or is written to 0 at the same time. This condition ensures proper handling of processor accesses aft

Reset of the processor is indicated through the Rocc bit in the EJ_TCK clock signal domain a number of EJ_TCK
cycles after it is removed in the processor clock domain in order to allow for proper synchronization between th
clock domains.

Figure 10-22shows the format of the EJTAG Control register;Table 10-37describes the EJTAG Control register fields

Figure 10-22 EJTAG Control Register Format

35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Address

Table 10-36 Address Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

Address 35:0 Address used by processor access. R Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Rocc Psz 0 Doze Halt PerRst PRnW PrAcc 0 PrRst ProbEn ProbTrap 0 EjtagBrk 0 DM 0
196 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.5 EJTAG Test Access Port
Table 10-37 EJTAG Control Register Field Descriptions

Fields Description Read/
Write

Reset
State

Name Bits

Rocc 31

Indicates if a processor reset or soft reset has occurred since the bit
was cleared:

0: No reset occurred
1: Reset occurred

The Rocc bit stays set as long as reset is applied.

This bit must be cleared to acknowledge that the reset was
detected. The EJTAG Control register is not updated in the
Update-DR state unless Rocc is 0 or written to 0 at the same time,
which ensures correct handling of the processor access after reset.

R/W0 1

Psz 30:29

Indicates the size of a pending processor access, in combination
with the Address register:

0: Byte
1: Halfword
2: Word, 5-7 bytes
3: Triple, Doubleword

A full description of this field is located inSection 10.5.2.3, "Data
Register (TAP Instruction DATA, FASTDATA or ALL)" on page
193, including reserved combinations with Address register bits.

This field is valid only when a processor access is pending,
otherwise the read value is undefined.

R Undefined

Doze 22

Indicates if the processor is in low-power mode:

0: Processor is not in low-power mode
1: Processor is in low-power mode

Doze indicates Reduced Power (RP) and WAIT low-power modes.

R 0

Halt 21

Indicates if the internal system bus clock is running:

0: Internal system bus clock is running
1: Internal system bus clock is stopped

Halt indicates a WAIT in the system that stops the internal system
bus clock.

R 0

PerRst 20

Controls the peripheral reset with implementation-dependent
behavior:

0: No peripheral reset applied
1: Peripheral reset applied

The signal has no reset effect on the 5K core internally, but the
external logic may apply reset throgh the ordinary reset signals for
the core.

There is no inherent indication of whether PerRst is effective, so
the user must consult system documentation.

When this bit is changed, then it is only guaranteed that the new
value has taken effect when it can be read back here. This
handshake mechanism ensures that the setting from the EJ_TCK
clock domain takes effect in the processor clock domain and in
peripherals.

The value of the bit is output on the EJ_PerRst signal.

R/W 0
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 197

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features
PRnW 19

Indicates read or write of a pending processor access:

0: Read processor access, for a fetch/load access
1: Write processor access, for a store access

This value is defined only when a processor access is pending.

R Undefined

PrAcc 18

Indicates a pending processor access and controls finishing of a
pending processor access. When read:

0: No pending processor access
1: Pending processor access

A write of 0 finishes a processor access if pending; otherwise
operation of the processor is UNDEFINED if the bit is written to
0 when no processor access is pending. A write of 1 is ignored.

R/W0 0

PrRst 16

Controls the processor reset with implementation-dependent
behavior:

0: No processor reset applied
1: Processor reset applied

The signal has no reset effect on the 5K core internally, but the
external logic may apply reset throgh the ordinary reset signals for
the core.

There is no inherent indication of an effective PrRst, so the user
must consult system documentation.

If a reset occurs on PrRst, then all parts of the system are reset. It
is not allowed for only some device to be reset.

When this bit is changed then it is guaranteed that the new value
has taken effect when it can be read back here. This handshake
mechanism ensures that the setting from the EJ_TCK clock
domain takes effect in the processor clock domain and in
peripherals.

However, because a processor reset clears this bit, then the effect
of setting it can be that the bit is cleared when the reset takes effect.
In this case, the Rocc bit should be observed to detect that the reset
took effect.

The value of the bit is output on the EJ_PrRst signal.

R/W 0

ProbEn 15

Controls indication to the processor of whether the probe expects
to handle accesses to EJTAG memory through servicing of
processors accesses:

0: Probe does not service processors accesses
1: Probe will service processor accesses

The ProbEn bit is reflected as a read-only bit in Debug Control
Register (DCR) bit 0.

When this bit is changed, then it is guaranteed that the new value
has taken effect in the DCR when it can be read back here. This
handshake mechanism ensures that the setting from the EJ_TCK
clock domain takes effect in the processor clock domain.

However, a change of ProbEn prior to setting the EjtagBrk bit is
effective for the debug handler.

Not all combinations of ProbEn and ProbTrap are allowed; see the
description below this table.

R/W

See
description
below this

table.

Table 10-37 EJTAG Control Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset
State

Name Bits
198 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.5 EJTAG Test Access Port

tion.
t value

 EJTAG

al reset

ility of
The reset value of the EjtagBrk, ProbTrap, and ProbEn bits follows the setting of the internal EJTAGBOOT indica
If the EJTAGBOOT instruction has been given, and the internal EJTAGBOOT indication is active, then the rese
of the three bits is set (1), otherwise the reset value is clear (0).

The results of setting these bits are:

• A Debug Interrupt exception is requested right after reset because EjtagBrk is set

• The debug handler is executed from the EJTAG memory because ProbTrap is set to indicate debug vector in
memory at 0xFFFF FFFF FF20 0200

• Service of the processor access is indicated because ProbEn is set

Thus it is possible to execute the debug handler right after reset, without executing any instructions from the norm
handler.

Use of ProbTrap and ProbEn allows independent specification of the debug exception vector location and availab
EJTAG memory. Behavior for the different combinations is shown inTable 10-38. Note that not all combinations are
allowed.

ProbTrap 14

Controls location of the debug exception vector:

0: Normal memory 0xFFFF FFFF BFC0 0480
1: EJTAG memory 0xFFFF FFFF FF20 0200 in dmseg

When this bit is changed, then it is guaranteed that the new value
is indicated to the processor when it can be read back here. This
handshake mechanism ensures that the setting from the EJ_TCK
clock domain takes effect in the processor clock domain.

However, a change of ProbTrap prior to setting the EjtagBrk bit is
effective at the debug exception.

Not all combinations of ProbEn and ProbTrap are allowed; see the
description below this table.

R/W

See
description
below this

table.

EjtagBrk 12

Requests a Debug Interrupt exception to the processor when this
bit is written as 1. The debug exception request is ignored if the
processor is already in debug at the time of the request. A write of
0 is ignored.

The debug request restarts the processor clock if the processor was
in a low-power mode.

The read value indicates a pending Debug Interrupt exception
requested through this bit:

0: No pending Debug Interrupt exception requested through this
 bit
1: Pending Debug Interrupt exception

Hardware clears this bit when the processor enters Debug Mode.

R/W1

See
description
below this

table.

DM 3

Indicates if the processor is in Debug Mode:

0: Processor is in Non-Debug Mode
1: Processor is in Debug Mode

R 0

0

28:23,
17, 13,
11:4,
2:0

Must be written as zeros; return zeros on reads. 0 0

Table 10-37 EJTAG Control Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset
State

Name Bits
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 199

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

., a bit is
ther the
cess was

(on the
. A
ifies the

of

rocessor
ccesses
 if the
loads will
10.5.2.6 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e
shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whe
Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata ac
successful or not (if completion was requested).

Figure 10-23 Fastdata Register Format

The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” spec
legal range of dmseg addresses (0xFFFF FFFF FF200000 - 0xFFFF FFFF FF20000F) that can be used for uploads and
downloads. The Data + Fastdata registers (selected with the FASTDATA instruction) allow efficient completion
pending Fastdata area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (p
access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download a
are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to see
attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used). Down

Table 10-38 Combinations of ProbTrap and ProbEn

ProbTrap ProbEn Debug Exception Vector Processor Accesses

0 0
Normal memory at 0xFFFF FFFF BFC0 0480

Not serviced by probe

0 1 Serviced by probe

1 0
If these two bits are changed to this state, the operation of the processor is UNDEFINED,
indicating that the debug exception vector is in EJTAG memory, but the probe will not
service processor accesses.

1 1 EJTAG memory at 0xFFFF FFFF FF20 0200 Serviced by probe

0

SPrAcc

Table 10-39 Fastdata Register Field Description

Fields Description Read/
Write

Reset
State

Name Bits

SPrAcc 0

Shifting in a zero value requests completion of the
Fastdata access. The PrAcc bit in the EJTAG Control
register is overwritten with zero when the access
succeeds. (The access succeeds if PrAcc is one and
the operation address is in the legal dmseg Fastdata
area.) When successful, a one is shifted out. Shifting
out a zero indicates a Fastdata access failure.

Shifting in a one does not complete the Fastdata
access and the PrAcc bit is unchanged. Shifting out a
one indicates that the access would have been
successful if allowed to complete and a zero indicates
the access would not have successfully completed.

R/W Undefined
200 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.5 EJTAG Test Access Port

a being

een the
ord for

gister
also shift in the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will shift out the dat
stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:

• PrAcc must be 1, i.e., there must be a pending processor access.

• The Fastdata operation must use a valid Fastdata area address in dmseg (0xFFFF FFFF FF200000 to
0xFFFF FFFF FF20000F).

Table 10-40 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated betw
download/upload transfer code and the probe software. Note that the most efficient transfer sizes are double-w
64-bit processors.

The Rocc bit of the Control register is not used for the FASTDATA operation.

10.5.2.7 Bypass Register (TAP Instruction BYPASS, EJTAGBOOT, NORMALBOOT, or Unused)

The Bypass register is a one-bit read-only register, which provides a minimum shift path through the TAP. This re
is also defined in IEEE 1149.1.Figure 10-24shows the format of the Bypass register;Table 10-41describes the Bypass
register field.

Figure 10-24 Bypass Register Format

Table 10-40 Operation of the FASTDATA access

Probe
Operation

Address
Match
check

PrAcc in
the

Control
Register

LSB
(SPrAcc)
shifted in

Action in the
Data Register

PrAcc
changes to

LSB
shifted

out

Data shifted
out

Download
using

FASTDATA

Fails x x none unchanged 0 invalid

Passes

1 1 none unchanged 1 invalid

1 0 write data 0 (SPrAcc) 1
valid

(previous)
data

0 x none unchanged 0 invalid

Upload
using

FASTDATA

Fails x x none unchanged 0 invalid

Passes

1 1 none unchanged 1 invalid

1 0 read data 0 (SPrAcc) 1 valid data

0 x none unchanged 0 invalid

0

0

MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 201

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

fic EJTAG
ions that

cessor
, and the

o finish

cessor

ared at
cleared.
access

s 0xF
10.5.3 Example of EJTAG Memory Access through Processor Access

The processor access feature makes it possible for the probe to handle accesses from the processors to the speci
memory area (dmseg). Thus the processor can execute a debug handler from EJTAG memory, whereby applicat
are not prepared with EJTAG code in the system memory still can be debugged.

The probe can get information about the access through the TAP as shown inTable 10-42.

The servicing of processor accesses works with a polling scheme, where the PrAcc bit is polled until a pending pro
access is indicated by PrAcc equal to 1. Then the Address register is read to get the address of the transaction
Data register is accessed to get the write data or provide the read data. Finally the PrAcc bit is cleared, in order t
the access from the processor.

In addition, the ProbTrap and ProbEn bits control the debug exception vector location and the indication to the pro
that the probe will service accesses to the EJTAG memory through processor accesses.

Handling of processor access in relation to reset requires specific handling. A pending processor access is cle
reset. At the same time, the Rocc bit is set, thereby inhibiting any processor accesses to be finished until Rocc is
Thus the probe will have to acknowledge that a reset occurred, and will thereby not accidentally finish a processor
due to a processor access that occurred before the reset.

The following subsections show examples of servicing read and write processor accesses.

10.5.3.1 Write Processor Access

Figure 10-25shows a possible flow for servicing a write processor access. A halfword store is performed to addres
FF20 1232 when running little-endian with the value 0x5678.

Table 10-41 Bypass Register Field Description

Fields Description Read/
Write

Power-up
State

Name Bits

0 0 Ignored on writes; returns zero on reads. R 0

Table 10-42 Information Provided to Probe at Processor Access

Information Field and Register

Pending processor access PrAcc field in the EJTAG Control register

Read or write access PRnW field in the EJTAG Control register

Size and data location Psz field in EJTAG Control register, and two or three LSBs in the Address register

Address Address register

Data Data register
202 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

10.5 EJTAG Test Access Port

o 1
W and

write.

of the
Address
e the three
Figure 10-25 Write Processor Access Example

The different probe actions shown on the figure are described below:

1. The EJTAG Control register is polled to get the indication for a pending PrAcc bit. The PrAcc bit is written t
when polling, in order to prevent a processor access from finishing before being serviced. The values of PRn
Psz are saved when PrAcc indicates a pending processor access.

2. The Address register is read. It contains the address of the store resulting in the write processor access.

3. The Data register is read, which contains the data from the store resulting in the write processor access.

4. The PrAcc bit is written to 0, in order to finish the processor access.

The probe must update the appropriate bytes in its internal memory used for EJTAG memory with the value of the

Notice that the two lower and the four upper bytes of the Data register are undefined, and that the two lower bytes
saved register are shifted up two bytes in the Data register as on a data bus for an external memory system. The
register in this case contains the address from the store; however, for some accesses, this is not the case becaus
LSBs are modified for some accesses depending on size and address.

10.5.3.2 Read Processor Access

Figure 10-26shows a possible flow for servicing a read processor access.Figure 10-26shows a doubleword load/fetch
from address 0xFFFF FFFF FF20 3450.

PrAcc

Probe
action

PRnW

Psz

Address

Data

1 1

Data = = 0xXXXX XXXX 5678 XXXX

Address = = 0xF FF20 1232

Size = 1

2 3 41 1
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 203

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 10 EJTAG Debug Features

o 1
W and

ss, with

.

modified
or the
a register
Figure 10-26 Read Processor Access Example

The different probe actions shown in the figure are described below:

1. The EJTAG Control register is polled to get the indication for a pending PrAcc bit. The PrAcc bit is written t
when polling, in order to prevent a processor access from finishing before being serviced. The values of PRn
Psz are saved when PrAcc indicates a pending processor access.

2. The Address register is read. It contains the address of the load/fetch resulting in the write processor acce
the three LSBs modified to allow size indication together with the Psz.

3. The Data register is written with the data to return for the load/fetch, resulting in the read processor access

4. The PrAcc bit is cleared, in order to finish the processor access.

The probe must provide data for the read processor access from the internal EJTAG memory.

Notice that the Address register does not contain the direct address from the access, because the three LSBs are
to indicate the size in conjunction with Psz. Also notice that in this case, there is no shifting of the data returned f
processor access by writing to the Data register, because a doubleword is provided. For other accesses, the Dat
must be written with a shifted value depending on the specific access.

PrAcc

Probe
action

PRnW

Psz

Address

Data

1 1

Data =

Address = = 0xF FF20 3457

Size = 3

2 3 41 1

0x0..0 0..0 0..0 BEEF
204 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

basic

ction
Chapter 11

Instruction Set Overview

This chapter provides an overview of the 5K microprocessor core instruction set, including instruction formats and
instruction types. Refer toChapter 12, “Instructions,” for a detailed description of each instruction.

This chapter contains the following sections:

• Section 11.1, "CPU Instruction Formats"

• Section 11.2, "Load and Store Instructions"

• Section 11.3, "Computational Instructions"

• Section 11.4, "Jump and Branch Instructions"

• Section 11.5, "Control Instructions"

• Section 11.6, "Coprocessor Instructions"

• Section 11.7, "Enhancements to the MIPS Architecture"

11.1 CPU Instruction Formats

A CPU instruction consists of a single 32-bit word, aligned on a word boundary.

There are three instruction formats: immediate (I-type), jump (J-type), and register (R-type). The use of a small number
of instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complex (and
less-frequently used) operations and addressing modes from these three formats, as needed. The three instru
formats are shown inFigure 11-1.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 205

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 11 Instruction Set Overview

he only

aded
f load

 about

he load
).
Figure 11-1 CPU Instruction Formats

11.2 Load and Store Instructions

Load and store are immediate (I-type) instructions that move data between memory and the general registers. T
addressing mode that load and store instructions directly support isbase register plus 16-bit signed immediate offset.

11.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction that immediately follows it is called adelayed
load instruction. The instruction slot immediately following the delayed load instruction is referred to as theload delay
slot.

In the 5K core processor, the instruction immediately following a load instruction can use the contents of the lo
register; in such cases, hardware interlocks insert additional real cycles. Though not required, the scheduling o
delay slots can be desirable, both for performance and R-Series processor compatibility. For more information
load scheduling, refer toSection 2.7, "Instruction Scheduling" on page 16.

11.2.2 Access Types

Access typerefers to the size of a data item to be loaded or stored. The access type is specified in the opcode of t
or store instruction, and, for some instructions, by the three low-order address bits (for example, LWL and LWR

op 6-bit operation code

rs 5-bit source register specifier

rt
5-bit target (source/destination) register specifier or
branch condition

immediate 16-bit immediate value, branch displacement or
address displacement

target 26-bit jump target address

rd 5-bit destination register specifier

sa 5-bit shift amount

funct 6-bit function field

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt

1110 6 5

rd sa

R-Type (Register)

J-Type (Jump)

I-Type (Immediate)
206 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

11.2 Load and Store Instructions

 in the
n

dressed
Regardless of access type or byte ordering (endianess), the given address always specifies the low-order byte
addressed field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-endia
configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within the ad
word, as shown inTable 11-1. Only the combinations shown inTable 11-1 are permitted; other combinations cause
Address Error exceptions.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 207

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 11 Instruction Set Overview
11.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in
immediate (I-type) format, in which one operand is a 16-bit immediate.

Table 11-1 Byte Access Within a Doubleword

Access Type Low-Order

Address Bits

Bytes Accessed

Big Endian

(63----------------31-------------------
0)

Little Endian

(63----------------31-------------------
0)

2 1 0 Byte Byte

Doubleword 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Septibyte
0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

Sextibyte
0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 2 3 4 5 6 7 7 6 5 4 3 2

Quintibyte
0 0 0 0 1 2 3 4 4 3 2 1 0

0 1 1 3 4 5 6 7 7 6 5 4 3

Word
0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte

0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword

0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte

0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7
208 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

11.4 Jump and Branch Instructions

ough
tiply
uct

efer to

delay

h of
d with

d Link
f the

to the
Computational instructions perform the following operations on register values:

– Arithmetic

– Logical

– Shift

– Multiply

– Divide

These operations can be grouped into the following four categories:

– ALU Immediate instructions

– Three-operand Register-type Instructions

– Shift Instructions

– Multiply And Divide Instructions

11.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions continue thr
the pipeline. The product of the MULT (integer multiply) instruction is saved in the HI and LO registers. If a mul
instruction is followed by an MFHI or MFLO before the product is available, the pipeline interlocks until the prod
becomes available. For information on the latency and repeat rates for integer multiply and divide operations, r
Table 2-3 on page 19 andTable 2-4 on page 20.

11.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
of one instruction. That is, the instruction immediately following the jump or branch (the instruction occupying thedelay
slot) always executes while the target instruction is being fetched from storage.

11.4.1 Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, bot
which are J-type instructions. In the J-type format, the 26-bit target address is shifted left by 2 bits and combine
the high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump an
Register instructions. Both are R-type instructions that use the 32-bit or 64-bit byte address contained in one o
general purpose registers.

11.4.2 Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot
16-bitoffset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruction.

If a conditional branch-likely is not taken, the instruction in the delay slot is nullified.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 209

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 11 Instruction Set Overview

rocessor
se

PR

GPR

PR
11.5 Control Instructions

Control instructions allow the software to initiate traps. They are always R-type.

11.6 Coprocessor Instructions

Coprocessor instructions perform operations in the Coprocessors that are supported by the 5K architecture. Cop
loads and stores are I-type. Coprocessor computational instructions have coprocessor-dependent formats. The
instructions are described inChapter 12, “Instructions.”

11.7 Enhancements to the MIPS Architecture

The 5K core execution unit implements the MIPS64 ISA1, which includes the following instructions:

• CLO: Count Leading Ones

• DCLO: Double Count Leading Ones

• CLZ: Count Leading Zeros

• DCLZ: Double Count Leading Zeros

• MADD: Multiply and Add Word

• MADDU: Multiply and Add Unsigned Word

• MSUB: Multiply and Subtract Word

• MSUBU: Multiply and Subtract Unsigned Word

• MUL: Multiply Word to Register

11.7.1 CLO - Count Leading Ones

The CLO instruction counts the number of leading ones in a word. The 32-bit word in the GPRrs is scanned from
most-significant to least-significant bit. The number of leading ones is counted and the result is written to the Grd.
If all 32 bits are set in the GPRrs, the result written to the GPRrd is 32.

11.7.2 DCLO - Double Count Leading Ones

The DCLO instruction counts the number of leading ones in a doubleword. The 64-bit word in the GPRrs is scanned
from most-significant to least-significant bit. The number of leading ones is counted and the result is written to the
rd. If all 64 bits are set in the GPRrs, the result written to the GPRrd is 64.

11.7.3 CLZ - Count Leading Zeros

The CLZ instruction counts the number of leading zeros in a word. The 32-bit word in the GPRrs is scanned from
most-significant to least-significant bit. The number of leading zeros is counted and the result is written to the Grd.
If all 32 bits are cleared in the GPRrs, the result written to the GPRrd is 32.

1 Refer to the MIPS64 Specification, rev 1.0 or later.
210 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

11.7 Enhancements to the MIPS Architecture

GPR

the
ult.

written

ving
tions

ord
ce

g value

ving
tions

alue
-bit

value

ving
tions

2-bit
to
ir. The

tances.

ving
tions
11.7.4 DCLZ - Double Count Leading Zeros

The DCLZ instruction counts the number of leading zeros in a doubleword. The 64-bit word in the GPRrs is scanned
from most-significant to least-significant bit. The number of leading zeros is counted and the result is written to the
rd. If all 64 bits are cleared in the GPRrs, the result written to the GPRrd is 64.

11.7.5 MADD - Multiply and Add Word

The MADD instruction multiplies two words and adds the result to the HI/LO register pair. The 32-bit word value in
GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as signed values, to produce a 64-bit res
The product is added to the 64-bit concatenated values in the HI and LO register pair. The resulting value is then
back to the HI and LO registers. No arithmetic exception occurs under any circumstances.

Note that this instruction does not provide the capability or writing directly to the target GPR. This is to prevent ha
two destination registers, which would be difficult to support in potential high-performance processor implementa
that rename registers.

11.7.6 MADDU - Multiply and Add Unsigned Word

The MADDU instruction multiplies two unsigned words and adds the result to the HI/LO register pair. The 32-bit w
value in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as unsigned values, to produ
a 64-bit result. The product is added to the 64-bit concatenated values in the HI and LO register pair. The resultin
is then written back to the HI and LO registers. No arithmetic exception occurs under any conditions.

Note that this instruction does not provide the capability or writing directly to the target GPR. This is to prevent ha
two destination registers, which would be difficult to support in potential high-performance processor implementa
that rename registers.

11.7.7 MSUB - Multiply and Subtract Word

The MSUB instruction multiplies two words and subtracts the result from the HI/LO register pair. The 32-bit word v
in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as signed values, to produce a 64
result. The product is subtracted from the 64-bit concatenated values in the HI and LO register pair. The resulting
is then written back to the HI and LO registers. No arithmetic exception occurs under any circumstances.

Note that this instruction does not provide the capability or writing directly to the target GPR. This is to prevent ha
two destination registers, which would be difficult to support in potential high-performance processor implementa
that rename registers.

11.7.8 MSUBU - Multiply and Subtract Unsigned Word

The MSUBU instruction multiplies two unsigned words and subtracts the result from the HI/LO register pair. The 3
word value in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as unsigned values,
produce a 64-bit result. The product is subtracted from the 64-bit concatenated values in the HI and LO register pa
resulting value is then written back to the HI and LO registers. No arithmetic exception occurs under any circums

Note that this instruction does not provide the capability of writing directly to the target GPR. This is to prevent ha
two destination registers, which would be difficult to support in potential high-performance processor implementa
that rename registers.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 211

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 11 Instruction Set Overview

he
11.7.9 MUL - Multiply Word

The MUL instruction multiplies two words and writes the result to a GPR. The 32-bit word value in the GPRrs is
multiplied by the 32-bit value in the GPRrt, treating both operands as signed values, to produce a 64-bit result. T
least-significant 32-bits of the product are written to the GPRrd. The contents of the HI and LO register pair are not
defined after the operation. No arithmetic exception occurs under any circumstances.
212 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

cture.

the

 in
Chapter 12

Instructions

This chapter provides a detailed guide to the 5K core instruction set, which is compliant with the MIPS64 archite
It contains the following sections:

• Section 12.1, "Example Instruction Page"

• Section 12.2, "Coprocessor 0 (CP0) Hazards"

• Section 12.3, "Instruction Summary"

• Section 12.4, "Instruction Bit Encodings"

• Section 12.5, "Instruction Set"

12.1 Example Instruction Page

Figure 12-1 shows an annotated example of an instruction page. Each instruction page includes some or all of
following fields discussed in the associated subsections:

• Section 12.1.1, "Instruction Descriptive Name and Mnemonic"

• Section 12.1.2, "Instruction Fields"

• Section 12.1.3, "Format Field"

• Section 12.1.4, "Purpose Field"

• Section 12.1.5, "Description Field"

• Section 12.1.6, "Restrictions Field"

• Section 12.1.7, "Operation Field"

• Section 12.1.8, "Exceptions Field"

The annotated instruction page inFigure 12-1 contains a brief description of each field. Each field is also described
detail in subsections following the figure.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 213

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

 below.

n’s

It

f
ats,
Figure 12-1 Example Instruction Description

12.1.1 Instruction Descriptive Name and Mnemonic

The instruction’s descriptive name and mnemonic are printed as page headings for each instruction, as shown

12.1.2 Instruction Fields

The instruction fields that encode the instruction word in register format are shown directly below the instructio
descriptive name and mnemonic. Field descriptions use the following conventions:

• Opcode names and the values of constant fields are shown in upper case (for example, SPECIAL and ADD inFigure
12-2).

Format: EXAMPLE rd, rs, rt MIPS I

Purpose: to execute an EXAMPLE op.

Description: rd ← rs exampleop rt

This section describes the operation of the instruction in text, tables, and illustrations.
includes information that would be difficult to encode in the Operation section.

Restrictions: This section lists any restrictions for the instruction. It can include values o
the instruction encoding fields such as register specifiers, operand values, operand form
address alignment, instruction scheduling hazards, and type of memory access for
addressed locations.

Operation

Exceptions: A list of exceptions taken by the instruction

Programming Notes:Information useful to programmers, but not necessary to describe
the operation of the instruction.

Example Instruction Name EXAMPLE

/* This section describes the operation of an instruction in a */
/* high-level pseudocode. It is precise in ways that the */
/* Description section is not, but is also missing information */
/* that is difficult to express in pseudocode. */
temp ← GPR[rs] exampleop GPR[rt]
GPR[rd] ← sign_extend(temp 31..0)

Instruction mnemonic
and descriptive name

Instruction encoding
Constant and variable
field names and values

Architecture level at

Short description

Symbolic description

Full description of
instruction operation

Restrictions on
instruction and

High-level language
description of

Exceptions caused
by instruction

Notes for programmers

operands

which instruction was
defined/redefined and
assembler format(s)
for each definition

instruction operation

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 EXAMPLE

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Add Word ADD
214 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.1 Example Instruction Page

le, bits

n was
d and

C2F
ious
for the

ase. The
ases,

F

ight
ogical
• Variable fields are shown with the lowercase names as used in the instruction description (for example,rs, rt andrd in
Figure 12-2).

• Unnamed fields containing all zeros are fields that are currently unused and are required to be zero (for examp
10:6 inFigure 12-2).

Figure 12-2 Example of Instruction Fields

12.1.3 Format Field

TheFormatfield shows the assembler formats for the instruction and the architecture level at which the instructio
originally defined. If the instruction definition has been extended, the architecture levels at which it was extende
the assembler formats for the extended definition are shown in their order of extension (for example, see the B
instruction). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in prev
levels. Extensions to instructions are also backwards compatible, that is, the original assembler formats are valid
extended architecture.

In the assembler formats, literals are shown in upper case, and variables (operand names) are shown in lower c
architectural level at which the instruction was first defined, for example “MIPS I,” is shown to the right. In some c
there is more than one assembler format for each architecture level.

Format lines sometimes include parenthetical comments to help explain variations in the formats (see the BC2
instruction). These comments are not part of the assembler format.

12.1.4 Purpose Field

The Purpose field provides a short description of the instruction’s use.

12.1.5 Description Field

In theDescriptionfield, a one-line symbolic description of the instruction, if feasible, appears immediately to the r
of the Description heading. Its main purpose is to show how fields in the instruction are used in the arithmetic or l
operation.

31 2526 2021 1516

SPECIAL
rs rt

6 5 5

rd
0 ADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Format: MIPS IADD rd, rs, rt

Purpose: to add 32-bit integers. If overflow occurs, then trap.

Description : rd ← rs + rt

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result. If the
addition results in 32-bit 2’s complement arithmetic overflow, then the destination register is not modified
and an Integer Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPR rd.
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 215

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ription

one

ards for

tation

 by

tion of
le by a

eal the
licable
e by
ls
The body of the Description field describes the operation of the instruction in text, tables, and figures. This desc
complements the high-level language description in theOperation section.

This section uses acronyms for register descriptions. “GPRrt” is CPU general-purpose register specified by the
instruction fieldrt. “FPR fs” is the floating point operand register specified by the instruction fieldfs. “CP1 registerfd”
is the coprocessor 1 general register specified by the instruction fieldfd. “FCSR” is the floating pointControl /Status
register.

12.1.6 Restrictions Field

TheRestrictionsfield documents any possible restrictions that may affect the instruction. Most restrictions fall into
of the following six categories:

• Valid values for instruction fields (for example, see JALR)

• Alignment requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see DADD)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline haz
which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL and SC)

12.1.7 Operation Field

TheOperation field describes the operation of the instruction in pseudocode that uses a high-level language no
resembling Pascal. This formal description complements theDescription section; it is not complete in itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

12.1.8 Exceptions Field

TheExceptionsfield lists the exceptions that can be caused by theOperationof the instruction. Exceptions that can be
caused by the instruction fetch (for example, TLB Refill) are omitted, as well as exceptions that can be caused
asynchronous external events, such as an interrupt.

12.2 Coprocessor 0 (CP0) Hazards

The state of the system coprocessor (CP0)—namely, the contents of registers and the TLB— affects the opera
various pipeline stages of a MIPS CPU, and manipulation of this state may produce results that are not detectab
number of subsequent instructions. While in theory it may be possible to fully interlock the CP0 state and conc
pipeline structure, this is not done. The effect of an instruction on CP0 state is, in general, not detectable by or app
to the next instruction to be issued. The delay from a change of CP0 state until the new state is available for us
subsequent instructions is known as aCP0 hazard. It is the responsibility of system programmers and programming too
to ensure that CP0 hazards do not result in incorrect system operation.

Operation :
temp GPR[rt]31..0

FCC[0] GPR[rt]31..0

Exceptions :
Integer Overflow
216 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.2 Coprocessor 0 (CP0) Hazards

he right
run on

e that the
of
n the
NOP

n
he 5K
code is

cific

d W—

running
by the
uffer
rity, the
size of

ulate the
he IFU

stage”)
s CP0

TC0

The
tore

fetch

tion is
lt is

st be

ason,
n as an

ion)
 the new

mation
rd. If

on is
Note: This chapter describes the CP0 hazards for the 5K processor. However, MIPS Technologies Inc. reserves t
to make future changes in the processor which may affect the size of any of the hazards. Software intended to be
other MIPS processors should therefore also take into account the CP0 hazards of those processors. Also not
5K processor may issue more than one instruction per cycle. For a MIPS implementation in which the number
instructions issued per cycle may be greater than one, the duration of an instruction hazard may be greater tha
duration in stages as calculated in this chapter. It is for this reason that the MIPS64 architecture defines the SS
instruction which forces the sequential processing of NOPs in a multi-issue design. If software whishes to fill a
instruction hazard with other instructions than SSNOPs, possible multi-issue should be taken into account on t
processor if one or more of these instructions are FPU or COP2 instructions. Programmers who whish that there
portable between different implementations of the MIPS architecture should not base their work on the 5K spe
documentation given in this manual, but rather on "MIPS64TM Architecture for Programmers Volume III: The
MIPS64TM Previleged Resource Architecture" which is freely available on http://www.mips.com.

To simplify the description of hazard conditions and calculations, the 6 stages of the pipeline—I, D, R, E, M, an
are numbered 0 - 5. (The pipeline is described inChapter 2, “Pipeline.”) In addition, for a few instructions that perform
some of their operations in cycles following the W stage, numbers greater than 5 are used. When the processor is
in cached memory space, the instruction fetch unit (IFU) speculatively fetches instructions before they are needed
pipeline. It is therefor possible for a number of instructions to have been already fetched and ready in the IFU b
before they enter the D stage, and thus there may be a number of instructions in the I stage. For reasons of cla
oldest instruction in the I stage is said to be in stage 0, and younger instructions are given negative numbers. The
the negative numbers does not reflect the amount of speculation done, but rather reflects what is needed to calc
correct CP0 hazards, as explained below. The CP0 takes steps to reduce the amount of speculation done by t
around instructions creating CP0 hazards, in order to limit the size of these hazards.

Table 12-1describes when the modified CP0 state becomes available for use by other instructions (the “available
and when the CP0 state is actually used for different operations (the “used stage”). The instruction that modifie
state is called thewriter instruction, and the instruction using the CP0 state is called theuser instruction. Instructions
held in the IFU buffer prior to the I stage are denoted by negative numbers.

The following steps are used to determine a hazard delay:

1. Find the pipeline stage of the writer instruction in which the new CP0 state is available. For example, the M
instruction writes a CP0 register in stage 5, and the new value is available in stage 6.

2. Find the pipeline stage in which the user instruction uses the CP0 state changed by the writer instruction.
instruction fetch usesStatusUX/KX as early as stage 1 to determine the addressing mode for the fetch. Load/s
instructions use the same information in stage 4 for the data reference.

3. Calculate the number of instructions that must be inserted between the hazardous pair, using the formula:
available_stage[writer] - (use_stage[user] + 1). For example, for an MTC0 that changesStatusUX/KX and an
instruction fetch using the new register contents, with the MTC0 data available at stage 6 and the instruction
using the new value as early as stage 1, the computation is: 6 – (-1 + 1)= 6. This means that 6 instructions must be
inserted between the MTC0 and the first instruction fetch using the new mode. If the result of the computa
less than or equal to zero, there is no hazard, and no instructions are required between the pair. If the resu
greater than zero, instructions (possibly NOPs) guaranteed to consume the resulting number of cycles mu
added between them.

Note: Stalls may be inserted between pipeline stages because of memory system performance, etc. For this re
software shall NOT depend on the exact size of a hazard, but regard the value obtained from the above calculatio
upper limit for the hazard. For example, it would be ill-advised to modify a TLB contents (using a TLBWR instruct
in a program that is executing in an address space that is mapped by the TLB entry which may be replaced by
information in the TLBWR instruction.

In short, to identify a hazard, look for a writer/user pair of specific CP0 state, and use the available/used stage infor
in Table 12-1 to calculate the delay required between the write and user. If no delay is required, there is no haza
there is a hazard, enough instructions must be placed between the writer and user so that the written informati
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 217

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

tion per
rd.

0 state
ructions.
available when the user needs it. Notice that future versions of the 5K processor may issue more than one instruc
cycle and thus require the use of the SSNOP instruction to ensure that software does not violate the CP0 haza

Note: Instructions that are inserted between a writer/user hazardous pair must NOT depend on or modify the CP
covered by the hazard. NOP and SSNOP instructions may always be used to separate the writing and using inst

Table 12-1 5K CP0 Hazard Description Table

 Instruction or
Event

CP0 Data Written; Latest Stage
Available

CP0 Data Used; Earliest Stage Used

MTC0 / DMTC0 CPR[0,rd] 6δ

MFC0 / DMFC0 CPR[0,rd] 4φ

TLBR PageMask, EntryHi,
EntryLo0, EntryLo1 6 Index, TLB Entry 4

TLBWI
TLBWR TLB entry 5γ Index or Random, PageMask,

EntryHi, EntryLo0, EntryLo1 4-7

TLBP Index 6 PageMask, EntryHi, TLB entry 4

ERET
Status[EXL, ERL] 5α

EPC or ErrorEPC 3α
LLbit 5

CACHE; Index Load
Tag operation TagLo, TagHi, ErrCtl 5ε

CACHE; Index Store
Tag operation TagLo, TagHi, ErrCtl 4ε

CACHE all
operations Cache line (see note) 5ε cache line (see note) 4ε

Load/Store

EntryHiASID,

Status[KSU, EXL, ERL, RE,KX, UX],

Config[K0, KU,K23],

TLB entry

4

Watchpoint on
read/write WatchHi, WatchLo 4

Load/Store exception EPC, Status, Cause,
BadVaddr, Context, XContext 6

Instruction fetch
exception

EPC, Status 6

Cause, BadVAddr, Context,
XContext 6

Instruction fetch

EntryHiASID,

Status[KSU, EXL, ERL, RE,KX,UX],
Config[K0, KU,K23]

-1αβ

TLB entry (mapped addresses) -1β

Watchpoint on
instruction fetch WatchHi, WatchLo 2

Coprocessor 0 usable
test Status[CU0, KSU, EXL, ERL] 2

Coprocessor 1 and 2
usable test Status[CU1,CU2,MX] 1

Dual issue disable;
FPU register mode
testπ and test of
ConfigDID

StatusFR,ConfigDID 0
218 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.2 Coprocessor 0 (CP0) Hazards

ter and
rvening
EntryHiASID refers to the ASID field of theEntryHi register,Config[K0,KU,K23] refers to the K0, KU, and K23 fields of
theConfig register, etc.

Table 12-2lists some hazard and non-hazard conditions, and the number of instructions required between the wri
the user. The table shows the operation that creates the hazard and the calculation for the required number of inte
instructions.

Interrupt signals
sampledρ

CauseIP 4

Status[IM, IE, EXL, ERL] disabling
interrupts 4

Status[IM, IE, EXL, ERL] enabling
interrupts through MTC0 1

TLB shutdown StatusTS 6

α

The ERET is interlocked to ensure that the fetch of the return instruction sees the correct CP0
state. The fetch of the return instruction is started following stage 3 of the ERET instruction.
In addition, any change in CP0 state leading up to the ERET is also interlocked by the
hardware except for state changes that sets the CP0 unusable. For optimal performance, it is
recommended that software observe the underlying hardware hazards since the interlock
mechanism has not been optimized for cycle performance in all cases.

β Instructions are fetched speculatively by the processor. However, to reduce CP0 hazards, the
amount of speculation is limited by the CP0 around any hazard-creating instructions.

δ
With an MTC0 toStatus that modifies KSU and sets EXL or ERL, it is possible for the six
instructions following the MTC0 to be executed incorrectly in the new mode and incorrectly
in Kernel Mode. This can be avoided by setting EXL first, and only later changing the value
of KSU.

ε There must be two non-load, non-CACHE instructions between a store and a CACHE
instruction that is directed to the same primary cache line as the store.

γ
The TLBWI/TLBWR instructions write the new TLB entries in the three cycles following
their M stage. However, the CP0 interlocks the TLB write instructions and operations using
the TLB, so that the new TLB entries are available as indicated in this table.

ρ

Interrupts are recognized in stages 2 - 4 (the R, E, and M stages). To provide compatibility
with other MIPS processors, the effect of an MTC0, which modifiesStatus[IM, IE, EXL, ERL]
in order to enable an interrupt, is first visible to the fourth instruction following the MTC0;
that is, the three instructions following the MTC0 will be executed with interrupts enabled
according to the old value ofStatus[IM, IE, EXL, ERL] . Disabling of interrupts using an MTC0
instruction takes effect immediately following the W stage of the MTC0 instruction.

φ
MTC0 directly followed by an MFC0 from the same register is fully interlocked—the second
MFC0 will stall in order to guarantee that it will return the new data written by the MTC0.
Note, however, that theDataHi register is aliased with the upper 32 bits ofDataLo, and that
this alias is NOT interlocked.

π The FR bit is used as earliest as the I stage to disable dual issue in some cases in 32 bit register
mode. SeeSection 2.4, "Limited Dual Issue" for further details.

Table 12-2 5K CP0 Hazards and Calculated Delay Times

Writer → User Hazard On Instructions
Between

Calculation

MTC0 → MFC0 CP0 register 0 interlocked by
hardware

Table 12-1 5K CP0 Hazard Description Table (Continued)

 Instruction or
Event

CP0 Data Written; Latest Stage
Available

CP0 Data Used; Earliest Stage Used
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 219

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

s not
m the
12.2.1 Hazards on CACHE Instructions Modifying Instruction Cache Contents

When the contents of the instruction cache is updated using a CACHE instruction, the instruction fetch unit doe
flush its buffers. Software is therefore required to separate the CACHE instruction and the first instruction fetch fro
affected memory locations by an ERET instruction.

12.3 Instruction Summary

12.3.1 Basic Instructions

This section contains detailed descriptions for each 5K core instruction.

Table 12-3 can be used as a quick reference for the 5K core family common instructions.

TLBWR/TLBWI →

TLBP, TPBR TLB entry 0 5-(4+1)

load/store using new TLB
entry TLB entry 0 5-(4+1)

I-fetch using new TLB
entry TLB entry 5 5-(-1+1)

MTCO StatusCU0 → Coprocessor instruction
needs CU0 set StatusCU0 3 6-(2+1)

MTCO StatusCU1 → Coprocessor instruction
needs CU1 set StatusCU1 4 6-(1+1)

TLBR → MFC0 EntryHi, PageMask EntryHi,
PageMask 1 6-(4+1)

MTC0 EntryLo0
MTC0 EntryLo1
MTC0 EntryHi
MTC0PageMask
MTC0 Index

→

TLBP

TLBR

TLBWI

TLBWR

EntryLo0
EntryLo1
EntryHi
PageMask
Index

1 6-(4+1)

TLBP → MFC0 Index Index 1 6-(4+1)

MTC0 EPC → ERET EPC
0 Interlocked by

hardware
MTC0 Status → ERET Status

MTC0 StatusIE → instruction interrupteda StatusIE 4 6-(1+1)

a. You cannot depend on a delay to be in effect if the instruction execution order is changed by exceptions. In this case, for ex-
ample, theminimum delay ofIE to be effective is themaximum delay before a pending, enabled interrupt can occur.

Table 12-3 5K Core Family Common Instruction Set

Instruction Description Function

ADD Add Rd = Rs + Rt

ADDI Add Immediate Rt = Rs + Immed

ADDIU Unsigned Add Immediate Rt = (uns)Rs + Immed

Table 12-2 5K CP0 Hazards and Calculated Delay Times (Continued)

Writer → User Hazard On Instructions
Between

Calculation
220 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.3 Instruction Summary
ADDU Unsigned Add Rd = (uns)Rs + Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (0 48 || Immed)

BC1F Branch On Coprocessor 1 False if COP1_condition == 0
 PC += offset

BC1FL Branch On Coprocessor 1 False Likely
if COP1_condition == 0
 PC += offset
else
 Ignore Next Instruction

BC1T Branch On Coprocessor 1 True if COP1_condition == 1
 PC += offset

BC1TL Branch On Coprocessor 1 True Likely
if COP1_condition == 1
 PC += offset
else
 Ignore Next Instruction

BC2F Branch On Coprocessor 2 False if COP2_condition == 0
 PC += offset

BC2FL Branch On Coprocessor 2 False Likely
if COP2_condition == 0
 PC += offset
else
 Ignore Next Instruction

BC2T Branch On Coprocessor 2 True if COP2_condition == 1
 PC += offset

BC2TL Branch On Coprocessor 2 True Likely
if COP2_condition == 1
 PC += offset
else
 Ignore Next Instruction

BEQ Branch On Equal if Rs == Rt
 PC += offset

BEQL Branch On Equal Likely
if Rs == Rt
 PC += offset
else
 Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[63]
 PC += offset

BGEZAL Branch on Greater Than or Equal To Zero And Link
if !Rs[63]
 GPR[31] = PC + 8
 PC += offset

BGEZALL Branch on Greater Than or Equal To Zero And Link
Likely

if !Rs[63]
 GPR[31] = PC + 8
 PC += offset
else
 Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero Likely
if !Rs[63]
 PC += offset
else
 Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[63] && Rs != 0
 PC += offset

BGTZL Branch on Greater Than Zero Likely
if !Rs[63] && Rs != 0
 PC += offset
else
 Ignore Next Instruction

Table 12-3 5K Core Family Common Instruction Set (Continued)

Instruction Description Function
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 221

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
BLEZ Branch on Less Than or Equal to Zero if Rs[63] || Rs == 0
 PC += offset

BLEZL Branch on Less Than or Equal to Zero Likely
if Rs[63] || Rs == 0
 PC += offset
else
 Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[63]
 PC += offset

BLTZAL Branch on Less Than Zero And Link
if Rs[63]
 GPR[31] = PC + 8
 PC += offset

BLTZALL Branch on Less Than Zero And Link Likely

if Rs[63]
 GPR[31] = PC + 8
 PC += offset
else
 Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely
if Rs[63]
 PC += offset
else
 Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
 PC += offset

BNEL Branch on Not Equal Likely
if Rs != Rt
 PC += offset
else
 Ignore Next Instruction

BREAK Breakpoint Breakpoint Exception

CACHE Cache Operation SeeSection 12.5, "Instruction Set" on page 233

CFC1 Control From Coprocessor 1 Rt = CCR[1, Rd]

CFC2 Control From Coprocessor 2 Rt = CCR[2, Rd]

CLO Count Leading Ones Rd = NumLeadingOnes(Rs[31:0])

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs[31:0])

CTC1 Control To Coprocessor 1 CCR[1, Rd] = Rt

CTC2 Control To Coprocessor 2 CCR[2, Rd] = Rt

DADD Doubleword Add Rd = Rs + Rt

DADDI Doubleword Add Immediate Rt = Rs + Immed

DADDIU Unsigned Doubleword Add Immediate Rt = Rs + Immed

DADDU Unsigned Doubleword Add Rd = Rs + Rt

DCLO Doubleword Count Leading Ones Rd = NumLeadingOnes(Rs)

DCLZ Doubleword Count Leading Zeros Rd = NumLeadingZeroes(Rs)

DDIV Doubleword Divide LO = Rs / Rt
HI = Rs % Rt

DDIVU Unsigned Doubleword Divide LO = (uns)Rs / Rt
HI = (uns)Rs % Rt

Table 12-3 5K Core Family Common Instruction Set (Continued)

Instruction Description Function
222 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.3 Instruction Summary
DERET Debug Exception Return PC = DEPC
Exit Debug Mode

DIV Divide LO = Rs / Rt
HI = Rs % Rt

DIVU Unsigned Divide LO = (uns)Rs / Rt
HI = (uns)Rs % Rt

DMFC0 Doubleword Move From Coprocessor 0 Rt = CPR[0, Rd, sel]

DMFC1 Doubleword Move From Coprocessor 1 Rt = CPR[1, Rd]

DMFC2 Doubleword Move From Coprocessor 2 Rt = CPR[2, Rd]

DMTC0 Doubleword Move To Coprocessor 0 CPR[0, Rd, sel] = Rt

DMTC1 Doubleword Move To Coprocessor 1 CPR[1, Rd] = Rt

DMTC2 Doubleword Move To Coprocessor 2 CPR[2, Rd] = Rt

DMULT Doubleword Multiply HI|LO = Rs * Rd

DMULTU Unsigned Doubleword Multiply HI|LO = (uns)Rs * Rd

DSLL Doubleword Shift Left Logical Rd = Rt << sa

DSLLV Doubleword Shift Left Logical Variable Rd = Rt << Rs[4:0]

DSLL32 Doubleword Shift Left Logical Plus 32 Rd = Rt << sa+32

DSRA Doubleword Shift Right Arithmetic Rd = Rt >> sa

DSRAV Doubleword Shift Right Arithmetic Variable Rd = Rt >> Rs[4:0]

DSRA32 Doubleword Shift Right Arithmetic Plus 32 Rd = Rt >> sa+32

DSRL Doubleword Shift Right Logical Rd = (uns)Rt >> sa

DSRLV Doubleword Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

DSRL32 Doubleword Shift Right Logical Plus 32 Rd = (uns)Rt >> sa+32

DSUB Doubleword Subtract Rd = Rs - Rt

DSUBU Unsigned Doubleword Subtract Rd = (uns)Rs - Rt

ERET Return from Exception

if SR[2]
 PC = ErrorEPC
else
 PC = EPC
SR[1] = 0
SR[2] = 0
LL = 0

J Unconditional Jump PC = PC[63:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[63:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JR Jump Register PC = Rs

LB Load Byte Rt = (byte)Mem[Rs+offset]

Table 12-3 5K Core Family Common Instruction Set (Continued)

Instruction Description Function
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 223

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
LBU Unsigned Load Byte Rt = (ubyte)Mem[Rs+offset]

LD Load Doubleword Rt = Mem[Rs+offset]

LDC1 Load Doubleword to Coprocessor 1 CPR[1,Rt] = Mem[Rs+offset]

LDC2 Load Doubleword to Coprocessor 2 CPR[2,Rt] = Mem[Rs+offset]

LDL Load Doubleword Left SeeSection 12.5, "Instruction Set" on page 233

LDR Load Doubleword Right SeeSection 12.5, "Instruction Set" on page 233

LDXC1 Load Doubleword Indexed to Coprocessor 1 CPR[1,Rd] = Mem[Rs+Rt]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

LL Load Linked Word
Rt = (word)Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LLD Load Linked Doubleword
Rt = Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16

LUXC1 Load Doubleword Indexed Unaligned to
Coprocessor 1 CPR[1,Rd] = Mem[Rs+Rt]

LW Load Word Rt = (word)Mem[Rs+offset]

LWC1 Load Word to Coprocessor 1 CPR[1,Rt] = Mem[Rs+offset]

LWC2 Load Word to Coprocessor 2 CPR[2,Rt] = Mem[Rs+offset]

LWL Load Word Left SeeSection 12.5, "Instruction Set" on page 233

LWR Load Word Right SeeSection 12.5, "Instruction Set" on page 233

LWU Load Word Unsigned Rt = (uword)Mem[Rs+offset]

LWXC1 Load Word Indexed to Coprocessor 1 CPR[1,Rd] = Mem[Rs+Rt]

MADD Multiply-Add HI|LO += Rs * Rt

MADDU Multiply-Add Unsigned HI|LO += (uns)Rs * Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, Rd, sel]

MFC1 Move From Coprocessor 1 Rt = CPR[1, Rd]

MFC2 Move From Coprocessor 2 Rt = CPR[2, Rd]

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVF Move Conditional on Floating Point False if COP1_condition == 0 then
 GPR[rd] = GPR[rs]

MOVN Move Conditional on Not Zero if Rt != 0 then
 Rd = Rs

MOVT Move Conditional on Floating Point True if COP1_condition == 1 then
 GPR[rd] = GPR[rs]

Table 12-3 5K Core Family Common Instruction Set (Continued)

Instruction Description Function
224 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.3 Instruction Summary
MOVZ Move Conditional on Zero if Rt == 0 then
 Rd = Rs

MSUB Multiply-Subtract HI|LO -= Rs * Rt

MSUBU Multiply-Subtract Unsigned HI|LO -= (uns)Rs * Rt

MTC0 Move To Coprocessor 0 CPR[0, Rd, sel] = Rt

MTC1 Move To Coprocessor 1 CPR[1, Rd] = Rt

MTC2 Move To Coprocessor 2 CPR[2, Rd] = Rt

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write HI|LO =Unpredictable
Rd = LO

MULT Integer Multiply HI|LO = Rs * Rd

MULTU Unsigned Multiply HI|LO = (uns)Rs * Rd

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Prefetch data from memory

PREFX Prefetch Indexed Prefetch data from memory using (GPR+GPR)
addressing

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word
if LL == 1
 (word)Mem[Rs+offset] = Rt
Rt = LL

SCD Store Condition Doubleword
if LL == 1
 Mem[Rs+offset] = Rt
Rt = LL

SD Store Doubleword Mem[Rs+offset] = Rt

SDBBP Software Debug Breakpoint Debug breakpoint exception

SDC1 Store Doubleword from Coprocessor 1 Mem[Rs+offset] = CPR[1,Rt]

SDC2 Store Doubleword from Coprocessor 2 Mem[Rs+offset] = CPR[2,Rt]

SDL Store Doubleword Left SeeSection 12.5, "Instruction Set" on page 233

SDR Store Doubleword Right SeeSection 12.5, "Instruction Set" on page 233

SDXC1 Store Doubleword Indexed from Coprocessor 1 Mem[Rs+Rt] = CPR[1,Rd]

SH Store Half (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

Table 12-3 5K Core Family Common Instruction Set (Continued)

Instruction Description Function
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 225

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
SLT Set on Less Than
if Rs < Rt
 Rd = 1
else
 Rd = 0

SLTI Set on Less Than Immediate
if Rs < Immed
 Rt = 1
else
 Rt = 0

SLTIU Unsigned Set on Less Than Immediate
if (uns)Rs < Immed
 Rt = 1
else
 Rt = 0

SLTU Unsigned Set on Less Than
if (uns)Rs < Rt
 Rd = 1
else
 Rd = 0

SRA Shift Right Arithmetic Rd = Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation SeeSection 12.5, "Instruction Set" on page 233

SUB Subtract Rd = Rs - Rt

SUBU Unsigned Subtract Rd = (uns)Rs - Rt

SUXC1 Store Doubleword Indexed Unaligned from
Coprocessor 1 Mem[Rs+Rt] = CPR[1,Rd]

SW Store Word (word)Mem[Rs+offset] = Rt

SWC1 Store Word from Coprocessor 1 (word)Mem[Rs+offset] = CPR[1,Rt]

SWC2 Store Word from Coprocessor 2 (word)Mem[Rs+offset] = CPR[2,Rt]

SWL Store Word Left SeeSection 12.5, "Instruction Set" on page 233

SWR Store Word Right SeeSection 12.5, "Instruction Set" on page 233

SWXC1 Store Word Indexed from Coprocessor 1 (word)Mem[Rs+Rt] = CPR[1,Rd]

SYNC Synchronize Memory SeeSection 12.5, "Instruction Set" on page 233

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
 TrapException

TEQI Trap if Equal Immediate if Rs == Immed
 TrapException

TGE Trap if Greater Than or Equal if Rs >= Rt
 TrapException

TGEI Trap if Greater Than or Equal Immediate if Rs >= Immed
 TrapException

TGEIU Unsigned Trap if Greater Than or Equal Immediateif (uns)Rs >= Immed
 TrapException

Table 12-3 5K Core Family Common Instruction Set (Continued)

Instruction Description Function
226 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.3 Instruction Summary
12.3.2 FPU Instructions

Table 12-4 provides a summary of the floating point instructions implemented only by the 5Kf core.

TGEU Unsigned Trap if Greater Than or Equal if (uns)Rs >= Rt
 TrapException

TLBWI Write Indexed TLB Entry SeeSection 12.5, "Instruction Set" on page 233

TLBWR Write Random TLB Entry SeeSection 12.5, "Instruction Set" on page 233

TLBP Probe TLB for Matching Entry SeeSection 12.5, "Instruction Set" on page 233

TLBR Read Indexed TLB Entry SeeSection 12.5, "Instruction Set" on page 233

TLT Trap if Less Than if Rs < Rt
 TrapException

TLTI Trap if Less Than Immediate if Rs < Immed
 TrapException

TLTIU Unsigned Trap if Less Than Immediate if (uns)Rs < Immed
 TrapException

TLTU Unsigned Trap if Less Than if (uns)Rs < Rt
 TrapException

TNE Trap if Not Equal if Rs != Rt
 TrapException

TNEI Trap if Not Equal Immediate if Rs != Immed
 TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

Table 12-4 5Kf Floating Point Instruction Set

Instruction Format* Description Function

ABS.fmt S, D Floating Point Absolute Value Fd = abs(Fs)

ADD.fmt S, D Floating Point Add Fd = Fs + Ft

C.cond.fmt S, D Floating Point Compare cc[i] = Fs compare_cond Ft

CEIL.L.fmt S, D Floating Point Ceiling to Long Fixed Point Fd = convert_and_round(Fs)

CEIL.W.fmt S, D Floating Point Ceiling to Word Fixed Poin Fd = convert_and_round(Fs)

CVT.D.fmt S, W, L Floating Point Convert to Double Floating Point Fd = convert_and_round(Fs)

CVT.L.fmt S, D Floating Point Convert to Long Fixed Point Fd = convert_and_round(Fs)

CVT.S.fmt W, D, L Floating Point Convert to Single Floating Point Fd = convert_and_round(Fs)

CVT.W.fmt S, D Floating Point Convert to Word Fixed Point Fd = convert_and_round(Fs)

DIV.fmt S, D Floating Point Divide Fd = Fs / Ft

FLOOR.L.fmt S, D Floating Point Floor to Long Fixed Point Fd = convert_and_round(Fs)

FLOOR.W.fmt S, D Floating Point Floor to Word Fixed Point Fd = convert_and_round(Fs)

* Instruction Format Type: S = Single, D = Double, W = Word, L = Longword

Table 12-3 5K Core Family Common Instruction Set (Continued)

Instruction Description Function
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 227

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

are

f
ree bits

ance,
 the
12.4 Instruction Bit Encodings

Instruction encodings are presented in this section. When encoding an instruction, the primaryopcodefield is encoded
first. Mostopcode values completely specify an instruction that has animmediate value or offset.

Opcode values that do not specify an instruction instead specify an instruction class. Instructions within a class
further specified by values in other fields. For instance,opcode REGIMM specifies theimmediate instruction class,
which includes conditional branch and trapimmediate instructions.

Figure 12-3shows a sample encoding table and the instructionopcodefield this table encodes. Bits 31..29 of theopcode
field are listed in the leftmost columns of the table. Bits 28..26 of theopcode field are listed along the topmost rows o
the table. Both decimal and binary values are given, with the first three bits designating the row, and the last th
designating the column.

An instruction’s encoding is found at the intersection of a row (bits 31..29) and column (bits 28..26) value. For inst
theopcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Similarly,
opcode value for EX2 is 64 (decimal), or 110100 (binary).

MADD.fmt S, D Floating Point Multiply Add Fd = Fs * Ft + Fr

MOV.fmt S, D Floating Point Move Fd = Fs

MOVF.fmt S, D Floating Point Conditional Move on Floating Point False if (cc[i] == 0) then Fd = Fs

MOVN.fmt S, D Floating Point Conditional Move on Non-Zero if (Rt != 0) then Fd = Fs

MOVT.fmt S, D Floating Point Conditional Move on Floating Point True if (cc[i] = 1) then Fd = Fs

MOVZ.fmt S, D Floating Point Conditional Move on Zero if (Rt == 0) then Fd = Fs

MSUB.fmt S, D Floating Point Multiply Subtract Fd = Fs * Ft - Fr

MUL.fmt S, D Floating Point Multiply Fd = Fs * Ft

NEG.fmt S, D Floating Point Negate Fd = neg(Fs)

NMADD.fmt S, D Floating Point Negative Multiply Add Fd = neg(Fs * Ft + Fr)

NMSUB.fmt S, D Floating Point Negative Multiply Subtract Fd = neg(Fs * Ft - Fr)

RECIP.fmt S, D Floating Point Reciprocal Approximation Fd = recip(Fs)

ROUND.L.fmt S, D Floating Point Round to Long Fixed Point Fd = convert_and_round(Fs)

ROUND.W.fmt S, D Floating Point Round to Word Fixed Point Fd = convert_and_round(Fs)

RSQRT.fmt S, D Floating Point Reciprocal Square Root Approximation Fd = rsqrt(Fs)

SQRT.fmt S, D Floating Point Square Root Fd = sqrt(Fs)

SUB.fmt S, D Floating Point Subtract Fd = Fs - Ft

TRUNC.L.fmt S, D Floating Point Truncate to Long Fixed Point Fd = convert_and_round(Fs)

TRUNC.W.fmt S, D Floating Point Truncate to Word Fixed Point Fd = convert_and_round(Fs)

Table 12-4 5Kf Floating Point Instruction Set (Continued)

Instruction Format* Description Function

* Instruction Format Type: S = Single, D = Double, W = Word, L = Longword
228 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.4 Instruction Bit Encodings
Tables12-6 through12-21 describe the encoding used.Table 12-5 describes the meaning of the symbols used in the
tables.

Table 12-5 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction causes a Reserved Instruction exception.

δ
(Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

⊥

Operation or field codes marked with this symbol represent instructions which are not legal if the
processor is configured to be backward compatible with MIPS32 processors. If the processor is
executing in Kernel Mode, Debug Mode, or 64-bit instructions are enabled, execution proceeds
normally. In other cases, executing such an instruction causes a Reserved Instruction exception
(non-coprocessor encodings or coprocessor instruction encodings for a coprocessor to which
access is allowed) or a Coprocessor Unusable exception (coprocessor instruction encodings for a
coprocessor to which access is not allowed).

θ

Operation or field codes marked with this symbol are available to the 5K core user. To avoid
multiple conflicting instruction definitions, the partner must notify MIPS Technologies when one
of these encodings is used. If no instruction is encoded with this value, executing such an
instruction must cause a Reserved Instruction exception for coprocessor instruction encodings for
a coprocessor to which access is allowed.

ε
Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction causes a Reserved
Instruction exception.

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011 EX1

4 100

5 101

6 110 EX2

7 111

Decimal encoding of
opcode (28..26)

Binary encoding of
opcode (28..26)

Decimal encoding of
opcode (31..29)

Binary encoding of
opcode (31..29)

Figure 12-3 Sample Bit Encoding Table
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 229

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 ISA. Software should avoid using these operation or field codes.

Table 12-6 Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 SPECIALδ REGIMMδ J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0δ COP1δ COP2δ COP1Xδ⊥ BEQL φ BNEL φ BLEZL φ BGTZL φ
3 011 DADDI⊥ DADDIU ⊥ LDL ⊥ LDR ⊥ SPECIAL2δ JALX ε MDMX εδ *

4 100 LB LH LWL LW LBU LHU LWR LWU ⊥
5 101 SB SH SWL SW SDL⊥ SDR⊥ SWR CACHE

6 110 LL LWC1 LWC2θ PREF LLD⊥ LDC1 LDC2 θ LD ⊥
7 111 SC SWC1 SWC2θ * SCD ⊥ SDC1 SDC2θ SD⊥

Table 12-7SPECIAL Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SLL MOVCIδ SRL SRA SLLV * SRLV SRAV

1 001 JR JALR MOVZ MOVN SYSCALL BREAK * SYNC

2 010 MFHI MTHI MFLO MTLO DSLLV ⊥ * DSRLV ⊥ DSRAV ⊥
3 011 MULT MULTU DIV DIVU DMULT ⊥ DMULTU ⊥ DDIV ⊥ DDIVU ⊥
4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 * * SLT SLTU DADD ⊥ DADDU ⊥ DSUB⊥ DSUBU⊥
6 110 TGE TGEU TLT TLTU TEQ * TNE *

7 111 DSLL⊥ * DSRL ⊥ DSRA⊥ DSLL32⊥ * DSRL32⊥ DSRA32⊥

Table 12-8REGIMM Encoding of rt Field

rt bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZLφ BGEZL φ * * * *

1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 10 BLTZAL BGEZAL BLTZALL φ BGEZALL φ * * * *

3 11 * * * * * * * *

Table 12-5 Symbols Used in the Instruction Encoding Tables

Symbol Meaning
230 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.4 Instruction Bit Encodings
Table 12-9SPECIAL2 Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL * MSUB MSUBU ∗ ∗
1 001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 010 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 011 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 100 CLZ CLO ∗ ∗ DCLZ ⊥ DCLO ⊥ ∗ ∗
5 101 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
7 111 ∗ ∗ ∗ ∗ ∗ ∋ ∗ SDBBP

Table 12-10MOVCI Encoding of tf Bit

tf bit 16

0 1

MOVF MOVT

Table 12-11COP0 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC0 DMFC0⊥ * * MTC0 DMTC0 ⊥ * *

1 01 * * * * * * * *

2 10
CO δ

3 11

Table 12-12COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * TLBR TLBWI * * * TLBWR *

1 001 TLBP * * * * * * *

2 010 * * * * * * * *

3 011 ERET * * * * * * DERET

4 100 WAIT * * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table 12-13COP1 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC1 DMFC1⊥ CFC1 * MTC1 DMTC1⊥ CTC1 *

1 01 BC1δ * * * * * * *

2 10 Sδ D δ * * W δ L δ⊥ * *

3 11 * * * * * * * *
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 231

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Table 12-14 COP1 Encoding of rt Field When rs=BC1

rt bits 16

bit 17 0 1

0 BC1F BC1T

1 BC1FLφ BC1TL φ

Table 12-15COP1 Encoding of Function Field When rs=S

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L⊥ TRUNC.L ⊥ CEIL.L ⊥ FLOOR.L⊥ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCFδ MOVZ MOVN * RECIP ⊥ RSQRT⊥ *

3 011 * * * * * * * *

4 100 * CVT.D * * CVT.W CVT.L ⊥ * *

5 101 * * * * * * * *

6 110 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE

7 111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

Table 12-16COP1 Encoding of Function Field When rs=D

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L⊥ TRUNC.L ⊥ CEIL.L ⊥ FLOOR.L⊥ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCFδ MOVZ MOVN * RECIP ⊥ RSQRT⊥ *

3 011 * * * * * * * *

4 100 CVT.S * * * CVT.W CVT.L ⊥ * *

5 101 * * * * * * * *

6 110 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE

7 111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

Table 12-17COP1 Encoding of Function Field When rs=W or La

a. Format type L is legal only if 64-bit operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *
232 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
12.5 Instruction Set

The following hundreds of pages describes the instruction set.

Table 12-18COP1 Encoding of tf Bit When rs=S or D,Function=MOVCF

tf bit 16

0 1

MOVF.fmt MOVT.fmt

Table 12-19COP1X Encoding of Function Fielda

a. COP1X instructions are legal only if 64-bit operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 LWXC1 LDXC1 * * * LUXC1 * *

1 001 SWXC1 SDXC1 * * * SUXC1 * PREFX

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 MADD.S MADD.D * * * * * *

5 101 MSUB.S MSUB.D * * * * * *

6 110 NMADD.S NMADD.D * * * * * *

7 111 NMSUB.S NMSUB.D * * * * * *

Table 12-20COP2 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC2θ DMFC2⊥ θ CFC2θ θ MTC2 θ DMTC2 ⊥ θ CTC2θ θ
1 01 BC2δ θ θ θ θ θ θ θ
2 10 θ θ θ θ θ θ θ θ
3 11 θ θ θ θ θ θ θ θ

Table 12-21 COP2 Encoding of rt Field When rs=BC2

rt bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00 BC2Fθ BC2Tθ BC2FL φ θ BC2TL φ θ θ θ θ θ
1 01 θ θ θ θ θ θ θ θ
2 10 θ θ θ θ θ θ θ θ
3 11 θ θ θ θ θ θ θ θ
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 233

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
ABS.fmt

Format: ABS.S fd, fs MIPS32
ABS.D fd, fs MIPS32

Purpose:

To compute the absolute value of an FP value

Description: fd ← abs(fs)

The absolute value of the value in FPRfs is placed in FPRfd. The operand and result are values in formatfmt. Cause
bits are ORed into theFlag bits if no exception is taken.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt. If they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

ABS

000101

6 5 5 5 5 6

Floating Point Absolute Value ABS.fmt
234 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

 and

f the
ADD

Format: ADD rd, rs, rt MIPS32

Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Description: rd ← rs + rt

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is signed-extended and placed into GPRrd.

Restrictions:

If either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result o
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (GPR[rs] 31||GPR[rs] 31..0) + (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← sign_extend(temp 31..0)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Add Word ADD
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 235

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

to
ADD.fmt

Format: ADD.S fd, fs, ft MIPS32
ADD.D fd, fs, ft MIPS32

Purpose:

To add floating point values

Description: fd ← fs + ft

The value in FPRft is added to the value in FPRfs. The result is calculated to infinite precision, rounded by using
the current rounding mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt. Cause
bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of typefmt. If they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) +fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

ADD

000000

6 5 5 5 5 6

Floating Point Add ADD.fmt
236 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

 and

tion is
ADDI

Format: ADDI rt, rs, immediate MIPS32

Purpose:

To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: rt ← rs + immediate

The 16-bit signedimmediateis added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is sign-extended and placed into GPRrt.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the opera
UNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) then
UNPREDICTABLE

endif
temp ← (GPR[rs] 31||GPR[rs] 31..0) + sign_extend(immediate)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rt] ← sign_extend(temp 31..0)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 0

ADDI

001000
rs rt immediate

6 5 5 16

Add Immediate Word ADDI
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 237

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

d

tion is

es not
r arith-
ADDIU

Format: ADDIU rt, rs, immediate MIPS32

Purpose:

To add a constant to a 32-bit integer

Description: rt ← rs + immediate

The 16-bit signedimmediateis added to the 32-bit value in GPRrs and the 32-bit arithmetic result is sign-extende
and placed into GPRrt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the opera
UNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) then
UNPREDICTABLE

endif
temp ← GPR[rs] + sign_extend(immediate)
GPR[rt] ← sign_extend(temp 31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or intege
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

ADDIU

001001
rs rt immediate

6 5 5 16

Add Immediate Unsigned Word ADDIU
238 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

oper-

es not
r arith-
ADDU

Format: ADDU rd, rs, rt MIPS32

Purpose:

To add 32-bit integers

Description: rd ← rs + rt

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs and the 32-bit arithmetic result is
sign-extended and placed into GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
ation isUNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← GPR[rs] + GPR[rt]
GPR[rd] ← sign_extend(temp 31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or intege
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADDU

100001

6 5 5 5 5 6

Add Unsigned Word ADDU
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 239

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
AND

Format: AND rd, rs, rt MIPS32

Purpose:

To do a bitwise logical AND

Description: rd ← rs AND rt

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical AND operation. The result is
placed into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

AND

100100

6 5 5 5 5 6

And AND
240 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
ANDI

Format: ANDI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical AND with a constant

Description: rt ← rs AND immediate

The 16-bitimmediateis zero-extended to the left and combined with the contents of GPRrs in a bitwise logical AND
operation. The result is placed into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] and zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ANDI

001100
rs rt immediate

6 5 5 16

And Immediate ANDI
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 241

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ng
P con-
delay

e

es for
BC1F

Format: BC1F offset (cc = 0 implied) MIPS32
BC1F cc, offset MIPS32

Purpose:

To test an FP condition code and do a PC-relative conditional branch

Description: if cc = 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the F
dition code bitCC is false (0), the program branches to the effective target address after the instruction in the
slot is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific valu
tf andnd.

I: condition ← FPConditionCode(cc) = 0
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

0

tf

0
offset

6 5 3 1 1 16

Branch on FP False BC1F
242 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

r

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range

Branch on FP False (cont.) BC1F
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 243

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

lot only

ng
P
delay

e

es for
BC1FL

Format: BC1FL offset (cc = 0 implied) MIPS32
BC1FL cc, offset MIPS32

Purpose:

To test an FP condition code and make a PC-relative conditional branch; execute the instruction in the delay s
if the branch is taken.

Description: if cc = 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FCon-
dition Codebit CC is false (0), the program branches to the effective target address after the instruction in the
slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific valu
tf andnd.

I: condition ← FPConditionCode(cc) = 0
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

1

tf

0
offset

6 5 3 1 1 16

Branch on FP False Likely BC1FL
244 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

r

rom a
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on FP False Likely (cont.) BC1FL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 245

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ng
P con-

ay slot

e

es for
BC1T

Format: BC1T offset (cc = 0 implied) MIPS32
BC1T cc, offset MIPS32

Purpose:

To test an FP condition code and do a PC-relative conditional branch

Description: if cc = 1 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the F
dition code bitCC is true (1), the program branches to the effective target address after the instruction in the del
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific valu
tf andnd.

I: condition ← FPConditionCode(cc) = 1
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

0

tf

1
offset

6 5 3 1 1 16

Branch on FP True BC1T
246 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

r

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Branch on FP True (cont.) BC1T
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 247

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

only if

ng
P
delay

e

es for
BC1TL

Format: BC1TL offset (cc = 0 implied) MIPS32
BC1TL cc, offset MIPS32

Purpose:

To test an FP condition code and do a PC-relative conditional branch; execute the instruction in the delay slot
the branch is taken.

Description: if cc = 1 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FCon-
dition Codebit CC is true (1), the program branches to the effective target address after the instruction in the
slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific valu
tf andnd.

I: condition ← FPConditionCode(cc) = 1
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

1

tf

1
offset

6 5 3 1 1 16

Branch on FP True Likely BC1TL
248 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

r

rom a
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on FP True Likely (cont.) BC1TL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 249

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ng
COP2
in the

e

es for

r

BC2F

Format: BC2F offset (cc = 0 implied) MIPS32
BC2F cc, offset MIPS32

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch

Description: if cc = 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the
condition specified byCC is false (0), the program branches to the effective target address after the instruction
delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific valu
tf andnd.

I: condition ← COP2Condition(cc) = 0
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

0

tf

0
offset

6 5 3 1 1 16

Branch on COP2 False BC2F
250 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

lay slot

ng
COP2
in the

e

es for
BC2FL

Format: BC2FL offset (cc = 0 implied) MIPS32
BC2FL cc, offset MIPS32

Purpose:

To test a COP2 condition code and make a PC-relative conditional branch; execute the instruction in the de
only if the branch is taken.

Description: if cc = 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the
condition specified byCC is false (0), the program branches to the effective target address after the instruction
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific valu
tf andnd.

I: condition ← COP2Condition(cc) = 0
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

1

tf

0
offset

6 5 3 1 1 16

Branch on COP2 False Likely BC2FL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 251

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

r

rom a
Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on COP2 False Likely (cont.) BC2FL
252 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ng
COP2

in the

e

es for

r

BC2T

Format: BC2T offset (cc = 0 implied) MIPS32
BC2T cc, offset MIPS32

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch

Description: if cc = 1 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the
condition specified byCC is true (1), the program branches to the effective target address after the instruction
delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific valu
tf andnd.

I: condition ← COP2Condition(cc) = 1
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

0

tf

1
offset

6 5 3 1 1 16

Branch on COP2 True BC2T
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 253

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ot only

ng
COP2

in the

e

es for
BC2TL

Format: BC2TL offset (cc = 0 implied) MIPS32
BC2TL cc, offset MIPS32

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch; execute the instruction in the delay sl
if the branch is taken.

Description: if cc = 1 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the
condition specified byCC is true (1), the program branches to the effective target address after the instruction
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific valu
tf andnd.

I: condition ← COP2Condition(cc) = 1
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

1

tf

1
offset

6 5 3 1 1 16

Branch on COP2 True Likely BC2TL
254 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

r

rom a
Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on COP2 True Likely (cont.) BC2TL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 255

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ng

elay

e

r

BEQ

Format: BEQ rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if rs = rt then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are equal, branch to the effective target address after the instruction in the d
slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 Kbytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

BEQ r0, r0 offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

31 26 25 21 20 16 15 0

BEQ

000100
rs rt offset

6 5 5 16

Branch on Equal BEQ
256 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

.

ng

lot is

e

BEQL

Format: BEQL rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken

Description: if rs = rt then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are equal, branch to the target address after the instruction in the delay s
executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BEQL

010100
rs rt offset

6 5 5 16

Branch on Equal Likely BEQL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 257

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

r

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Equal Likely (cont.) BEQL
258 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ng

ter the

e

r

BGEZ

Format: BGEZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs ≥ 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address af
instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZ

00001
offset

6 5 5 16

Branch on Greater Than or Equal to Zero BGEZ
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 259

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ranch,

ng

ter the

e

hen

d link.
ge.
BGEZAL

Format: BGEZAL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call

Description: if rs ≥ 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address af
instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch an
BAL is used in a manner similar to JAL, but provides PC-relative addressing and a more limited target PC ran

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZAL

10001
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link BGEZAL
260 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ken.

ranch,

ng

ter the
ted.

hen

e

BGEZALL

Format: BGEZALL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is ta

Description: if rs ≥ 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address af
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not execu

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZALL

10011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 261

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Greater Than or Equal to Zero and Link Likely (con’t.) BGEZALL
262 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ng

ter the
ted.

e

BGEZL

Format: BGEZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs ≥ 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address af
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not execu

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZL

00011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero Likely BGEZL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 263

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

r

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Greater Than or Equal to Zero Likely (cont.) BGEZL
264 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ng

dress

e

r

BGTZ

Format: BGTZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs > 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than zero (sign bit is 0 but value not zero), branch to the effective target ad
after the instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] > 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BGTZ

000111
rs

0

00000
offset

6 5 5 16

Branch on Greater Than Zero BGTZ
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 265

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ng

dress
t exe-

e

BGTZL

Format: BGTZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs > 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than zero (sign bit is 0 but value not zero), branch to the effective target ad
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is no
cuted.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] > 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BGTZL

010111
rs

0

00000
offset

6 5 5 16

Branch on Greater Than Zero Likely BGTZL
266 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

r

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Greater Than Zero Likely (cont.) BGTZL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 267

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ng

arget

e

r

BLEZ

Format: BLEZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs ≤ 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective t
address after the instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≤ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BLEZ

000110
rs

0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero BLEZ
268 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ng

arget
slot is

e

BLEZL

Format: BLEZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs ≤ 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective t
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay
not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≤ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BLEZL

010110
rs

0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero Likely BLEZL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 269

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

r

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Less Than or Equal to Zero Likely (cont.) BLEZL
270 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ng

ion in

e

BLTZ

Format: BLTZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs < 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruct
the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 0 2)

condition ← GPR[rs] < 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZ

00000
offset

6 5 5 16

Branch on Less Than Zero BLTZ
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 271

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ranch,

ng

ion in

hen
ption

e

BLTZAL

Format: BLTZAL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call

Description: if rs < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruct
the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exce
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZAL

10000
offset

6 5 5 16

Branch on Less Than Zero and Link BLTZAL
272 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ken.

ranch,

ng

ion in

hen
ption

e

BLTZALL

Format: BLTZALL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is ta

Description: if rs < 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruct
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exce
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZALL

10010
offset

6 5 5 16

Branch on Less Than Zero and Link Likely BLTZALL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 273

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Less Than Zero and Link Likely (cont.) BLTZALL
274 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ng

ion in

e

BLTZL

Format: BLTZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs < 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruct
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZL

00010
offset

6 5 5 16

Branch on Less Than Zero Likely BLTZL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 275

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

r

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Less Than Zero Likely (cont.) BLTZL
276 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ng

the

e

r

BNE

Format: BNE rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if rs ≠ rt then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are not equal, branch to the effective target address after the instruction in
delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BNE

000101
rs rt offset

6 5 5 16

Branch on Not Equal BNE
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 277

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

.

ng

the

e

BNEL

Format: BNEL rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken

Description: if rs ≠ rt then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are not equal, branch to the effective target address after the instruction in
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BNEL

010101
rs rt offset

6 5 5 16

Branch on Not Equal Likely BNEL
278 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

r

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Not Equal Likely (cont.) BNEL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 279

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

r. The
ng the
BREAK

Format: BREAK MIPS32

Purpose:

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handle
codefield is available for use as software parameters, but is retrieved by the exception handler only by loadi
contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(Breakpoint)

Exceptions:

Breakpoint

31 26 25 6 5 0

SPECIAL

000000
code

BREAK

001101

6 20 6

Breakpoint BREAK
280 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

-

e. If

ndi-

ritten

s true

res

ool-
P val-

true

. Each

he sec-
ot follow

est for
econd
C.cond.fmt

Format: C.cond.S fs, ft (cc = 0 implied) MIPS32
C.cond.D fs, ft (cc = 0 implied) MIPS32
C.cond.S cc, fs, ft MIPS32
C.cond.D cc, fs, ft MIPS32

Purpose:

To compare FP values and record the Boolean result in a condition code

Description: cc ← fs compare_cond ft

The value in FPRfs is compared to the value in FPRft; the values are in formatfmt. The comparison is exact and nei
ther overflows nor underflows.

If the comparison specified bycond2..1 is true for the operand values, the result is true; otherwise, the result is fals
no exception is taken, the result is written into condition codeCC; true is 1 and false is 0.

If one of the values is an SNaN, orcond3 is set and at least one of the values is a QNaN, an Invalid Operation co
tion is raised and the Invalid Operation flag is set in theFCSR. If the Invalid OperationEnablebit is set in theFCSR,
no result is written and an Invalid Operation exception is taken immediately. Otherwise, the Boolean result is w
into condition codeCC.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is alway
and the others are false. The familiar relations aregreater than, less than, andequal. In addition, the IEEE floating
point standard defines the relationunordered,which is true when at least one operand value is NaN; NaN compa
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such asless than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The B
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two F
ues in the equation. If theequal relation is true, for example, then all four example predicates above yield a
result. If theunordered relation is true then only the final predicate,unordered or equal, yields a true result.

Logical negation of a compare result allows eight distinct comparisons to test for the 16 predicates as shown in
mnemonic tests for both a predicate and its logical negation. For each mnemonic,comparetests the truth of the first
predicate. When the first predicate is true, the result is true as shown in the “If Predicate Is True” column, and t
ond predicate must be false, and vice versa. (Note that the False predicate is never true and False/True do n
the normal pattern.)

The truth of the second predicate is the logical negation of the instruction result. After a compare instruction, t
the truth of the first predicate can be made with the Branch on FP True (BC1T) instruction and the truth of the s
can be made with Branch on FP False (BC1F).

31 26 25 21 20 16 15 11 10 8 7 6 5 4 3 0

COP1

010001
fmt ft fs cc 0

A

0

FC

11
cond

6 5 5 5 3 1 1 2 4

Floating Point Compare C.cond.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 281

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

, then

Table 12-22shows another set of eight compare operations, distinguished by acond3 value of 1 and testing the same
16 conditions. For these additional comparisons, if at least one of the operands is a NaN, including Quiet NaN
an Invalid Operation condition is raised. If the Invalid Operation condition is enabled in theFCSR, an Invalid Opera-
tion exception occurs.

Table 12-22 FPU Comparisons Without Special Operand Exceptions

Instruction Comparison Predicate Comparison CC
Result

Instruction

Cond
Mnemonic

Name of Predicate and
Logically Negated Predicate (Abbreviation)

Relation
Values

If
Predicate
 Is True

Inv Op
Excp.

if
QNaN

?

Condition
Field

> < = ? 3 2..0

F
False [this predicate is always False] F F F F

F

No 0

0
True (T) T T T T

UN
Unordered F F F T T

1
Ordered (OR) T T T F F

EQ
Equal F F T F T

2
Not Equal (NEQ) T T F T F

UEQ
Unordered or Equal F F T T T

3
Ordered or Greater Than or Less Than (OGL) T T F F F

OLT
Ordered or Less Than F T F F T

4
Unordered or Greater Than or Equal (UGE) T F T T F

ULT
Unordered or Less Than F T F T T

5
Ordered or Greater Than or Equal (OGE) T F T F F

OLE
Ordered or Less Than or Equal F T T F T

6
Unordered or Greater Than (UGT) T F F T F

ULE
Unordered or Less Than or Equal F T T T T

7
Ordered or Greater Than (OGT) T F F F F

Key: ? =unordered, > =greater than, < = less than, = isequal, T = True, F = False

Floating Point Compare (cont.) C.cond.fmt
282 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Table 12-23 FPU Comparisons With Special Operand Exceptions for QNaNs

Instruction Comparison Predicate Comparison CC
Result

Instructio
n

Cond
Mnemonic

Name of Predicate and
Logically Negated Predicate (Abbreviation)

Relation
Values

If
Predicate
Is True

Inv Op
Excp If
QNaN?

Condition
Field

> < = ? 3 2..0

SF
Signaling False [this predicate always False] F F F F

F

Yes 1

0
Signaling True (ST) T T T T

NGLE
Not Greater Than or Less Than or Equal F F F T T

1
Greater Than or Less Than or Equal (GLE) T T T F F

SEQ
Signaling Equal F F T F T

2
Signaling Not Equal (SNE) T T F T F

NGL
Not Greater Than or Less Than F F T T T

3
Greater Than or Less Than (GL) T T F F F

LT
Less Than F T F F T

4
Not Less Than (NLT) T F T T F

NGE
Not Greater Than or Equal F T F T T

5
Greater Than or Equal (GE) T F T F F

LE
Less Than or Equal F T T F T

6
Not Less Than or Equal (NLE) T F F T F

NGT
Not Greater Than F T T T T

7
Greater Than (GT) T F F F F

Key: ? =unordered, > =greater than, < = less than, = isequal, T = True, F =False

Floating Point Compare (cont.) C.cond.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 283

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Restrictions:

The fieldsfsandft must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPREDICT-
ABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or

QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then
less ← false
equal ← false
unordered ← true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond 3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then

SignalException(InvalidOperation)
endif

else
less ← ValueFPR(fs, fmt) < fmt ValueFPR(ft, fmt)
equal ← ValueFPR(fs, fmt) = fmt ValueFPR(ft, fmt)
unordered ← false

endif
condition ← (cond 2 and less) or (cond 1 and equal)

or (cond 0 and unordered)
SetFPConditionCode(cc, condition)

Floating Point Compare (cont.) C.cond.fmt
284 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

Invalid
NaNs
it code
ling
if two
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN raise the
Operation condition. Comparisons that raise the Invalid Operation condition for Quiet NaNs in addition to S
permit a simpler programming model if NaNs are errors. Using these compares, programs do not need explic
to check for QNaNs causing theunorderedrelation. Instead, they take an exception and allow the exception hand
system to deal with the error when it occurs. For example, consider a comparison in which we want to know
numbers are equal, but for whichunordered would be an error.

comparisons using explicit tests for QNaN
c.eq.d $f2,$f4# check for equal
nop
bc1t L2 # it is equal
c.un.d $f2,$f4# it is not equal,

but might be unordered
bc1t ERROR # unordered goes off to an error handler

not-equal-case code here
...

equal-case code here
L2:
--
comparison using comparisons that signal QNaN

c.seq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
nop

it is not unordered here
...

not-equal-case code here
...

equal-case code here

Floating Point Compare (cont.) C.cond.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 285

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ss. The
ache as
CACHE

Format: CACHE op, offset(base) MIPS32

Purpose:

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective addre
effective address is used in one of the following ways based on the operation to be performed and the type of c
described in the following table.

31 26 25 21 20 16 15 0

CACHE

101111
base op offset

6 5 5 16

Table 12-24 Usage of Effective Address

Operation
Requires an

Type of
Cache

Usage of Effective Address

Address Physical
The effective address is used to address the cache. An address translation is
performed on the effective address (with the possibility that a TLB Refill or TLB
Invalid exception might occur)

Index N/A

The effective address is used to index the cache.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ← Log2(BPT)
IndexBit ← Log2(CS / A)
WayBit ← IndexBit + Ceiling(Log2(A))
Way ← Addr WayBit-1..IndexBit
Index ← Addr IndexBit-1..OffsetBit

Indexed cache instructions referring to disabled or non-existent ways are ignored.

Perform Cache Operation CACHE
286 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

dex
ould use
r TLB

ple, if
ed via a
ion is

n of the

h condi-

tions,
r cache
Figure 12-4 Usage of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For in
operations (where the address is used to index the cache but need not match the cache tag) software sh
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions no
Refill exceptions with a cause code of TLBS, nor data Watch exceptions.

A Cache Error exception may occur as a byproduct of some operations performed by this instruction. For exam
a Writeback operation detects a cache or bus error during the processing of the operation, that error is report
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruct
terminated in an error.

An address Error Exception (with cause code equal AdEL) occurs if the effective address references a portio
kernel address space which would normally result in such an exception.

Data watch is not triggered by a cache instruction whose address matches the Watch register address matc
tions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Bits [20:18] of the instruction specify the operation to perform. On Index Load Tag and Index Store Data opera
the specific double-word that is addressed is loaded into / read from the DataLo and DataHi registers. All othe
instructions are line-based and the word and byte indexes will not affect their operation.

Table 12-25 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache

2#00 I Primary Instruction

2#01 D Primary Data

2#10 T Not supported

2#11 S Not supported

Perform Cache Operation CACHE

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte index
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 287

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Table 12-26 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Cleared

Code Caches Name Effective
Address
Operand

Type

Operation Implemented?

2#000

I Index Invalidate Index

Set the state of the cache block at the specified
index to invalid.

This encoding may be used by software to
invalidate the entire instruction cache by
stepping through all valid indices.

Yes

D Index Writeback
Invalidate

Index If the state of the cache block at the specified
index is valid and dirty, write the block back to
the memory address specified by the cache tag.
After that operation is completed, set the state
of the cache block to invalid. If the block is
valid but not dirty, set the state of the block to
invalid.

This encoding may be used by software to
invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
powerup.

Yes

S, T Reserved Index No

2#001 I,D Index Load Tag Index

Read the tag for the cache block at the specified
way and index into theTagLo andTagHi
Coprocessor 0 register. Also read the data
corresponding to the byte index into the
DataLo andDataHi registers. When loading
data into theDataLo andDataHi registers the
lower three bits of the byte index are ignored in
order to obtain an aligned double word access
to the cache.

Yes

2#010 I,D Index Store Tag Index

Write the tag for the cache block at the
specified index from theTagLo andTagHi
Coprocessor 0 registers.

This encoding may be used by software to
initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that theTagLo andTagHi registers
associated with the cache be initialized first.

Yes

Perform Cache Operation CACHE
288 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
2#011 All
Reserved

Unspecified
Executed as a no-op.

No

2#100

I, D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.

This encoding may be used by software to
invalidate a range of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

Yes

S, T Reserved Address No

2#101

I Fill Address

Fill the cache from the specified address.

The cache line is fecthed only if it is not already
in the cache.

Yes

D Hit Writeback
Invalidate

Address If the cache block contains the specified
address and it is valid and dirty, write the
contents back to memory. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

This encoding may be used by software to
invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

Yes

S, T Reserved Address No

2#110

D Hit Writeback Address
If the cache block contains the specified
address and it is valid and dirty, write the
contents back to memory. After the operation is
completed, leave the state of the line valid, but
clear the dirty state.

Yes

S, T Reserved Address No

Table 12-26 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Cleared

Code Caches Name Effective
Address
Operand

Type

Operation Implemented?
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 289

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
2#111 I, D Fetch and Lock Address

If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. The
way selected on fill from memory is the least
recently used.

The lock state is cleared by executing an Index
Invalidate, Index Writeback Invalidate, Hit
Invalidate, or Hit Writeback Invalidate
operation to the locked line, or via an Index
Store Tag operation with the lock bit reset in
theTagLo register.

Yes

Table 12-27 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set

Code Caches Name Effective
Address
Operand

Type

Operation Implemented?

2#001 I, D Index Load WS Index Read the WS RAM at the specified index into
theTagLo Coprocessor 0 register. Yes

2#010 I, D Index Store WS Index Update the WS RAM at the specified index
from theTagLo Coprocessor 0 register. Yes

2#011 I, D Index Store Data Index

Write theDataHi andDataLo Coprocessor 0
register contents at the way and byte index
specified. The lower three bits of the byte index
are ignored in order to obtain an aligned double
word access to the cache.

Yes

All
Others All Reserved Unspecified Executed as no-op. No

Table 12-26 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Cleared

Code Caches Name Effective
Address
Operand

Type

Operation Implemented?
290 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

che-
Restrictions:

The operation of this instruction isUNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction isUNDEFINED if the operaation requires an address, and that address is unca
able.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Perform Cache Operation (cont.) CACHE
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 291

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

+

CEIL.L.fmt

Format: CEIL.L.S fd, fs MIPS64
CEIL.L.D fd, fs MIPS64

Purpose:

To convert an FP value to 64-bit fixed point, rounding up

Description: fd ← convert_and_round(fs)

The value in FPRfs, in formatfmt, is converted to a value in 64-bit long fixed point format and rounding toward∞
(rounding mode 2). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, a d the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for long fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CEIL.L

001010

6 5 5 5 5 6

Fixed Point Ceiling Convert to Long Fixed Point CEIL.L.fmt
292 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

Fixed Point Ceiling Convert to Long Fixed Point (cont.) CEIL.L.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 293

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

+

CEIL.W.fmt

Format: CEIL.W.S fd, fs MIPS32
CEIL.W.D fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point, rounding up

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 32-bit word fixed point format and rounding toward∞
(rounding mode 2). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for word fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CEIL.W

001110

6 5 5 5 5 6

Floating Point Ceiling Convert to Word Fixed Point CEIL.W.fmt
294 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
CFC1

Format: CFC1 rt, fs MIPS32

Purpose:

To copy a word from an FPU control register to a GPR

Description: rt ← FP_Control[fs]

Copy the 32-bit word from FP (coprocessor 1) control registerfs into GPRrt, sign-extending it to 64 bits.

Restrictions:

There are a few control registers defined for the floating point unit. The result isUNPREDICTABLE if fsspecifies a
register that does not exist.

Operation:

if fs = 0 then
temp ← FIR

elseif fs = 25 then
temp ← 0 24 || FCSR 31..25 || FCSR 23

elseif fs = 26 then
temp ← 0 14 || FCSR 17..12 || 0 5 || FCSR 6..2 || 0 2

elseif fs = 28 then
temp ← 0 20 || FCSR 11.7 || 0 4 || FCSR 24 || FCSR 1..0

elseif fs = 31 then
temp ← FCSR

else
temp ← UNPREDICTABLE

endif
GPR[rt] ← sign_extend(temp)

31 26 25 21 20 16 15 11 10 0

COP1

010001

CF

00010
rt fs

0

000 0000 0000

6 5 5 5 11

Move Control Word From Floating Point CFC1
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 295

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Exceptions:

Coprocessor Unusable, Reserved Instruction

Move Control Word From Floating Point (cont.) CFC1
296 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
CFC2

Format: CFC2 rt, rd MIPS32

Purpose:

To copy a word from a Coprocessor 2 control register to a GPR

Description: rt ← CCR[2,rd]

Copy the 32-bit word from Coprocessor 2 control registerrd into GPRrt, sign-extending it to 64 bits.

Restrictions:

The result isUNPREDICTABLE if fs specifies a register that does not exist.

Operation:

temp ← CCR[2,rd]
GPR[rt] ← sign_extend(temp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP2

010010

CF

00010
rt rd

0

000 0000 0000

6 5 5 5 11

Move Control Word From Coprocessor 2 CFC2
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 297

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

unted

oth the

on are
CLO

Format: CLO rd, rs MIPS32

Purpose:

To Count the number of leading ones in a word

Description: rd ← count_leading_ones rs

Bits 31..0 of GPRrs are scanned from most significant to least significant bit. The number of leading ones is co
and the result is written to GPRrd. If all of bits 31..0 were set in GPRrs, the result written to GPRrd is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in b
rt andrd fields of the instruction. The operation of the instruction isUNPREDICTABLE if the rt andrd fields of the
instruction contain different values.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the results of the operati
UNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) then
UNPREDICTABLE

endif
temp ← 32
for i in 31 .. 0

if GPR[rs] i = 0 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

CLO

100001

6 5 5 5 5 6

Count Leading Ones in Word CLO
298 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

unted

oth the

on are
CLZ

Format: CLZ rd, rs MIPS32

Purpose

Count the number of leading zeros in a word

Description: rd ← count_leading_zeros rs

Bits 31..0 of GPRrs are scanned from most significant to least significant bit. The number of leading zeros is co
and the result is written to GPRrd. If no bits were set in GPRrs, the result written to GPRrt is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in b
rt andrd fields of the instruction. The operation of the instruction isUNPREDICTABLE if the rt andrd fields of the
instruction contain different values.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the results of the operati
UNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) then
UNPREDICTABLE

endif
temp ← 32
for i in 31 .. 0

if GPR[rs] i = 1 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

CLZ

100000

6 5 5 5 5 6

Count Leading Zeros in Word CLZ
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 299

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ses
CTC1

Format: CTC1 rt, fs MIPS32

Purpose:

To copy a word from a GPR to an FPU control register

Description: FP_Control[fs] ← rt

Copy the low word from GPRrt into the FP (coprocessor 1) control register indicated byfs.

Writing to the floating pointControl/Statusregister, theFCSR, causes the appropriate exception if anyCausebit and
its correspondingEnablebit are both set. The register is written before the exception occurs. Writing toFEXRto set a
cause bit whose enable bit is already set, or writing toFENRto set an enable bit whose cause bit is already set cau
the appropriate exception. The register is written before the exception occurs.

Restrictions:

There are a few control registers defined for the floating point unit. The result isUNPREDICTABLE if fsspecifies a
register that does not exist.

31 26 25 21 20 16 15 11 10 0

COP1

010001

CT

00110
rt fs

0

000 0000 0000

6 5 5 5 11

Move Control Word to Floating Point CTC1
300 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Operation:

temp ← GPR[rt] 31..0
if fs = 25 then

if temp 31..8 ≠ 0 24 then
UNPREDICTABLE

else
FCSR ← temp 7..1 || FCSR 24 || temp 0 || FCSR 22..0

endif
elseif fs = 26 then

if temp 22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← FCSR31..18 || temp 17..12 || FCSR 11..7 ||
temp 6..2 || FCSR 1..0

endif
elseif fs = 28 then

if temp 22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← FCSR31..25 || temp 2 || FCSR 23..12 || temp 11..7
|| FCSR 6..2 || temp 1..0

endif
elseif fs = 31 then

if temp 22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← temp

endif
else

UNPREDICTABLE
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Move Control Word to Floating Point (cont.) CTC1
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 301

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
CTC2

Format: CTC2 rt, rd MIPS32

Purpose:

To copy a word from a GPR to a Coprocessor 2 control register

Description: CCR[2,rd] ← rt

Copy the low word from GPRrt into the Coprocessor 2 control register indicated byrd.

Restrictions:

The result isUNPREDICTABLE if rd specifies a register that does not exist.

Operation:

temp ← GPR[rt] 31..0
CCR[2,rd] ← temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP2

010010

CT

00110
rt rd

0

000 0000 0000

6 5 5 5 11

Move Control Word to Coprocessor 2 CTC2
302 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

g to
CVT.D.fmt

Format: CVT.D.S fd, fs MIPS32
CVT.D.W fd, fs MIPS32
CVT.D.L fd, fs MIPS64

Purpose:

To convert an FP or fixed point value to double FP

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in double floating point format and rounded accordin
the current rounding mode inFCSR. The result is placed in FPRfd. If fmt is S or W, then the operation is always
exact.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for type fmt andfd for double floating point—if they are not valid,
the result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.D

100001

6 5 5 5 5 6

Floating Point Convert to Double Floating Point CVT.D.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 303

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ng
CVT.L.fmt

Format: CVT.L.S fd, fs MIPS64
CVT.L.D fd, fs MIPS64

Purpose:

To convert an FP value to a 64-bit fixed point

Description: fd ← convert_and_round(fs)

Convert the value in formatfmt in FPR fs to long fixed point format and round according to the current roundi
mode inFCSR. The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written tofd.

Restrictions:

The fieldsfs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.L

100101

6 5 5 5 5 6

Floating Point Convert to Long Fixed Point CVT.L.fmt
304 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

the
CVT.S.fmt

Format: CVT.S.D fd, fs MIPS32
CVT.S.W fd, fs MIPS32
CVT.S.L fd, fs MIPS64

Purpose:

To convert an FP or fixed point value to single FP

Description: fd ← convert_and_round(fs)

The value in FPRfs, in formatfmt, is converted to a value in single floating point format and rounded according to
current rounding mode inFCSR. The result is placed in FPRfd.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for type fmt andfd for single floating point. If they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.S

100000

6 5 5 5 5 6

Floating Point Convert to Single Floating Point CVT.S.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 305

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

g to
CVT.W.fmt

Format: CVT.W.S fd, fs MIPS32
CVT.W.D fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point

Description: fd ← convert_and_round(fs)

The value in FPRfs, in formatfmt, is converted to a value in 32-bit word fixed point format and rounded accordin
the current rounding mode inFCSR. The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for type fmt andfd for word fixed point—if they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.W

100100

6 5 5 5 5 6

Floating Point Convert to Word Fixed Point CVT.W.fmt
306 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

nteger
DADD

Format: DADD rd, rs, rt MIPS64

Purpose:

To add 64-bit integers. If overflow occurs, then trap.

Description: rd ← rs + rt

The 64-bit doubleword value in GPRrt is added to the 64-bit value in GPRrs to produce a 64-bit result. If the addi-
tion results in 64-bit 2’s complement arithmetic overflow, then the destination register is not modified and an I
Overflow exception occurs. If it does not overflow, the 64-bit result is placed into GPRrd.

Restrictions:

Operation:

temp ← (GPR[rs] 63||GPR[rs]) + (GPR[rt] 63||GPR[rt])
if (temp 64 ≠ temp 63) then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp 63..0
endif

Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DADDU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DADD

101100

6 5 5 5 5 6

Doubleword Add DADD
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 307

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

n
rflow
DADDI

Format: DADDI rt, rs, immediate MIPS64

Purpose:

To add a constant to a 64-bit integer. If overflow occurs, then trap.

Description: rt ← rs + immediate

The 16-bit signedimmediateis added to the 64-bit value in GPRrs to produce a 64-bit result. If the addition results i
64-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Integer Ove
exception occurs. If it does not overflow, the 64-bit result is placed into GPRrt.

Restrictions:

Operation:

temp ← (GPR[rs] 63||GPR[rs]) + sign_extend(immediate)
if (temp 64 ≠ temp 63) then

SignalException(IntegerOverflow)
else

GPR[rt] ← temp 63..0
endif

Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DADDIU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 0

DADDI

011000
rs rt immediate

6 5 5 16

Doubleword Add Immediate DADDI
308 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

es not
viron-
DADDIU

Format: DADDIU rt, rs, immediate MIPS64

Purpose:

To add a constant to a 64-bit integer

Description: rt ← rs + immediate

The 16-bit signedimmediateis added to the 64-bit value in GPRrs and the 64-bit arithmetic result is placed into
GPRrt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[rt] ← GPR[rs] + sign_extend(immediate)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic such as address arithmetic, or integer arithmetic en
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

DADDIU

011001
rs rt immediate

6 5 5 16

Doubleword Add Immediate Unsigned DADDIU
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 309

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

es not
viron-
DADDU

Format: DADDU rd, rs, rt MIPS64

Purpose:

To add 64-bit integers

Description: rd ← rs + rt

The 64-bit doubleword value in GPRrt is added to the 64-bit value in GPRrs and the 64-bit arithmetic result is
placed into GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[rd] ← GPR[rs] + GPR[rt]

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic such as address arithmetic, or integer arithmetic en
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DADDU

101101

6 5 5 5 5 6

Doubleword Add Unsigned DADDU
310 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

s is

oth the
DCLO

Format: DCLO rd, rs MIPS64

Purpose:

To count the number of leading ones in a doubleword

Description: rd ← count_leading_ones rs

The 64-bit word in GPRrs is scanned from most-significant to least-significant bit. The number of leading one
counted and the result is written to GPRrd. If all 64 bits were set in GPRrs, the result written to GPRrd is 64.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in b
rt andrd fields of the instruction. The operation of the instruction isUNPREDICTABLE if the rt andrd fields of the
instruction contain different values.

Operation:

temp <- 64
for i in 63.. 0

if GPR[rs] i = 1 then
temp <- 63 - i
break

endif
endfor
GPR[rd] <- temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

DCLO

100101

6 5 5 5 5 6

Count Leading Ones in Doubleword DCLO
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 311

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

s is

oth the
DCLZ

Format: DCLZ rd, rs MIPS64

Purpose:

To count the number of leading zeros in a doubleword

Description: rd ← count_leading_zeros rs

The 64-bit word in GPRrs is scanned from most significant to least significant bit. The number of leading zero
counted and the result is written to GPRrd. If no bits were set in GPRrs, the result written to GPRrd is 64.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in b
rt andrd fields of the instruction. The operation of the instruction isUNPREDICTABLE if the rt andrd fields of the
instruction contain different values.

Operation:

temp <- 64
for i in 63.. 0

if GPR[rs] i = 0 then
temp <- 63 - i
break

endif
endfor
GPR[rd] <- temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

DCLZ

100100

6 5 5 5 5 6

Count Leading Zeros in Doubleword DCLZ
312 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

l-
DDIV

Format: DDIV rs, rt MIPS64

Purpose:

To divide 64-bit signed integers

Description: (LO, HI) ← rs / rt

The 64-bit doubleword in GPRrs is divided by the 64-bit doubleword in GPRrt, treating both operands as signed va
ues. The 64-bit quotient is placed into special registerLO and the 64-bit remainder is placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRrt is zero, the arithmetic result value isUNPREDICTABLE .

Operation:

LO ← GPR[rs] div GPR[rt]
HI ← GPR[rs] mod GPR[rt]

Exceptions:

Reserved Instruction

Programming Notes:

See “Programming Notes” for the DIV instruction.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DDIV

011110

6 5 5 10 6

Doubleword Divide DDIV
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 313

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

d
er
DDIVU

Format: DDIVU rs, rt MIPS64

Purpose:

To divide 64-bit unsigned integers

Description: (LO, HI) ← rs / rt

The 64-bit doubleword in GPRrs is divided by the 64-bit doubleword in GPRrt, treating both operands as unsigne
values. The 64-bit quotient is placed into special registerLO and the 64-bit remainder is placed into special regist
HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRrt is zero, the arithmetic result value is undefined.

Operation:

q ← (0 || GPR[rs]) div (0 || GPR[rt])
r ← (0 || GPR[rs]) mod (0 || GPR[rt])
LO ← q 63..0
HI ← r 63..0

Exceptions:

Reserved Instruction

Programming Notes:

See “Programming Notes” for the DIV instruction.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DDIVU

011111

6 5 5 10 6

Doubleword Divide Unsigned DDIVU
314 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ained in

on, a
instruc-

ch and
r-mode
DERET

Format: DERET EJTAG

Purpose:

To Return from a debug exception.

Description:

DERET returns from Debug Mode and resumes non-debug execution at the instruction whose address is cont
theDEPC register. DERET does not execute the next instruction (i.e. it has no delay slot).

Restrictions:

A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTC0 or a DMTC0 instructi
CP0 hazard hazard exists that must be removed via software insertion of the apporpriate number of SSNOP
tions.

The DERET instruction implements a software barrier for all changes in the CP0 state that could affect the fet
decode of the instruction at the PC to which the DERET returns, such as changes to the effective ASID, use
state, and addressing mode.

This instruction is legal only if the processor is executing in Debug Mode.The operation of the processor isUNDE-
FINED if a DERET is executed in the delay slot of a branch or jump instruction.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

DERET

011111

6 1 19 6

Debug Exception Return DERET
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 315

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Operation:

DebugDM ← 0
DebugIEXI ← 0
if IsMIPS16Implemented() then

PC ← DEPC63..1 || 0
ISAMode ← 0 || DEPC0

else
PC ← DEPC

endif

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

Debug Exception Return (cont.) DERET
316 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

s.
d

f the
DIV

Format: DIV rs, rt MIPS32

Purpose:

To divide a 32-bit signed integers

Description: (LO, HI) ← rs / rt

The 32-bit word value in GPRrs is divided by the 32-bit value in GPRrt, treating both operands as signed value
The 32-bit quotient is sign-extended and placed into special registerLO and the 32-bit remainder is sign-extended an
placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result o
operation isUNPREDICTABLE .

If the divisor in GPRrt is zero, the arithmetic result value isUNPREDICTABLE .

Operation:
if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then

UNPREDICTABLE
endif
q ← GPR[rs] 31..0 div GPR[rt] 31..0
LO ← sign_extend(q 31..0)
r ← GPR[rs] 31..0 mod GPR[rt] 31..0
HI ← sign_extend(r 31..0)

Exceptions:

None

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DIV

011010

6 5 5 10 6

Divide Word DIV
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 317

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ed and
divi-

th the
more

te
nal con-
EAK
Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detect
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel wi
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or
typically within the system software; one possibility is to take a BREAK exception with acodefield value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either termina
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptio
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BR
instruction to inform the operating system if a zero is detected.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

Divide Word (cont.) DIV
318 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ng
DIV.fmt

Format: DIV.S fd, fs, ft MIPS32
DIV.D fd, fs, ft MIPS32

Purpose:

To divide FP values

Description: fd ← fs / ft

The value in FPRfs is divided by the value in FPRft. The result is calculated to infinite precision, rounded accordi
to the current rounding mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRED-
ICABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

DIV

000011

6 5 5 5 5 6

Floating Point Divide DIV.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 319

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

s.
d

f the
DIVU

Format: DIVU rs, rt MIPS32

Purpose:

To divide a 32-bit unsigned integers

Description: (LO, HI) ← rs / rt

The 32-bit word value in GPRrs is divided by the 32-bit value in GPRrt, treating both operands as unsigned value
The 32-bit quotient is sign-extended and placed into special registerLO and the 32-bit remainder is sign-extended an
placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result o
operation isUNPREDICTABLE .

If the divisor in GPRrt is zero, the arithmetic result value is undefined.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UndefinedResult()

endif
q ← (0 || GPR[rs] 31..0) div (0 || GPR[rt] 31..0)
r ← (0 || GPR[rs] 31..0) mod (0 || GPR[rt] 31..0)
LO ← sign_extend(q 31..0)
HI ← sign_extend(r 31..0)

Exceptions:

None

Programming Notes:

See “Programming Notes” for the DIV instruction.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DIVU

011011

6 5 5 10 6

Divide Unsigned Word DIVU
320 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

he
DMFC0

Format: DMFC0 rt, rd MIPS64
DMFC0 rt, rd, sel MIPS64

Purpose:

To move the contents of a coprocessor 0 register to a general purpose register (GPR).

Description: rt ← CPR[0,rd,sel]

The contents of the coprocessor 0 register are loaded into GPRrt. Note that not all coprocessor 0 registers support t
sel field. In those instances, thesel field must be zero.

Restrictions:

The results areUNPREDICTABLE if coprocessor 0 does not contain a register as specified byrd andsel, or if the
coprocessor 0 register specified byrd andsel is a 32-bit register.

Operation:
datadoubleword ← CPR[0,rd,sel]
GPR[rt] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

DMF

00001
rt rd

0

0000 0000
sel

6 5 5 5 8 3

Doubleword Move from Coprocessor 0 DMFC0
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 321

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
DMFC1

Format: DMFC1 rt,fs MIPS64

Purpose:

To move a doubleword from an FPR to a GPR.

Description: rt ← fs

The contents of FPRfs are loaded into GPRrt.

Restrictions:

None

Operation:
datadoubleword ← ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)
GPR[rt] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP1

010001

DMF

00001
rt fs

0

000 0000 0000

6 5 5 5 11

Doubleword Move from Floating Point DMFC1
322 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
DMFC2

Format: DMFC2 rt, rd MIPS64
DMFC2, rt, rd,sel MIPS64

Purpose:

To move a doubleword from a coprocessor 2 register to a GPR.

Description: rt ← CPR[2, rd, sel]

The contents of the coprocessor 2 register specified by therd andselfields are loaded into GPRrt. Note that not all
coprocessor 2 registers may support thesel field. In those instances, thesel field must be zero.

Restrictions:

The results areUNPREDICTABLE if coprocessor 2 does not contain a register as specified byrd andsel, or if the
coprocessor 2 register specified byrd andsel is a 32-bit register.

Operation:

datadoubleword ← CPR[2,rd,sel]
GPR[rt] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP2

010010

DMF

00001
rt rd

0

000 0000 0
sel

6 5 5 5 8 3

Doubleword Move from Coprocessor 2 DMFC2
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 323

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
DMTC0

Format: DMTC0 rt, rd MIPS64
DMTC0 rt, rd, sel MIPS64

Purpose:

To move a doubleword from a GPR to a coprocessor 0 register.

Description: CPR[0,rd,sel] ← rt

The contents of GPRrt are loaded into the coprocessor 0 register specified in therd andselfields. Note that not all
coprocessor 0 registers support thesel field. In those instances, thesel field must be zero.

Restrictions:

The results areUNPREDICTABLE if coprocessor 0 does not contain a register as specified byrd andsel, or if the
coprocessor 0 register specified byrd andsel is a 32-bit register.

Operation:

datadoubleword ← GPR[rt]
CPR[0,rd,sel] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

DMT

00101
rt rd

0

0000 0000
sel

6 5 5 5 8 3

Doubleword Move to Coprocessor 0 DMTC0
324 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
DMTC1

Format: DMTC1 rt, fs MIPS64

Purpose:

To copy a doubleword from a GPR to an FPR

Description: fs ← rt

The doubleword contents of FPRfs are placed into FPRfs.

Restrictions:

None

Operation:

datadoubleword ← GPR[rt]
StoreFPR(fs, UNINTERPRETED_DOUBLEWORD, datadoubleword)

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP1

010001

DMT

00101
rt fs

0

000 0000 0000

6 5 5 5 11

Doubleword Move to Floating Point DMTC1
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 325

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
DMTC2

Format: DMTC2 rt,rd MIPS64
DMTC2 rt, rd, sel MIPS64

Purpose:

To move a doubleword from a GPR to a coprocessor 2 register.

Description: CPR[2, rd, sel] ← rt

The contents of GPRrt are loaded into the coprocessor 2 register specified by therd andselfields. Note that not all
coprocessor 2 registers may support thesel field. In those instances, thesel field must be zero.

Restrictions:

The results areUNPREDICTABLE if coprocessor 2 does not contain a register as specified byrd andsel, or if the
coprocessor 2 register specified byrd andsel is a 32-bit register.

Operation:

datadoubleword ← GPR[rt]
CPR[2,rd,sel] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP2

010010

DMT

00101
rt rd

0

0 0000 000
sel

6 5 5 5 8 3

Doubleword Move to Coprocessor 2 DMTC2
326 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

d
er
DMULT

Format: DMULT rs, rt MIPS64

Purpose:

To multiply 64-bit signed integers

Description: (LO, HI) ← rs × rt

The 64-bit doubleword value in GPRrt is multiplied by the 64-bit value in GPRrs, treating both operands as signe
values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into special registLO,
and the high-order 64-bit doubleword is placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ← GPR[rs] × GPR[rt]
LO ← prod 63..0
HI ← prod 127..64

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DMULT

011100

6 5 5 10 6

Doubleword Multiply DMULT
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 327

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ial reg-
DMULTU

Format: DMULTU rs, rt MIPS64

Purpose:

To multiply 64-bit unsigned integers

Description: (LO, HI) ← rs × rt

The 64-bit doubleword value in GPRrt is multiplied by the 64-bit value in GPRrs, treating both operands as
unsigned values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into spec
ister LO, and the high-order 64-bit doubleword is placed into special registerHI. No arithmetic exception occurs
under any circumstances.

Restrictions:

None

Operation:
prod ← (0||GPR[rs]) × (0||GPR[rt])
LO ← prod 63..0
HI ← prod 127..64

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DMULTU

011101

6 5 5 10 6

Doubleword Multiply Unsigned DMULTU
328 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

d in
DSLL

Format: DSLL rd, rt, sa MIPS64

Purpose:

To execute a left-shift of a doubleword by a fixed amount—0 to 31 bits

Description: rd ← rt << sa

The 64-bit doubleword contents of GPRrt are shifted left, inserting zeros into the emptied bits; the result is place
GPRrd. The bit-shift amount in the range 0 to 31 is specified bysa.

Restrictions:

None

Operation:

s ← 0 || sa
GPR[rd] ← GPR[rt] (63–s)..0 || 0 s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

DSLL

111000

6 5 5 5 5 6

Doubleword Shift Left Logical DSLL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 329

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

d in
DSLL32

Format: DSLL32 rd, rt, sa MIPS64

Purpose:

To execute a left-shift of a doubleword by a fixed amount—32 to 63 bits

Description: rd ← rt << (sa+32)

The 64-bit doubleword contents of GPRrt are shifted left, inserting zeros into the emptied bits; the result is place
GPRrd. The bit-shift amount in the range 0 to 31 is specified bysa.

Restrictions:

None

Operation:

s ← 1 || sa /* 32+sa */
GPR[rd] ← GPR[rt] (63–s)..0 || 0 s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

DSLL32

111100

6 5 5 5 5 6

Doubleword Shift Left Logical Plus 32 DSLL32
330 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

d in
DSLLV

Format: DSLLV rd, rt, sa MIPS64

Purpose:

To execute a left-shift of a doubleword by a variable number of bits

Description: rd ← rt << rs

The 64-bit doubleword contents of GPRrt are shifted left, inserting zeros into the emptied bits; the result is place
GPRrd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bits in GPRrs.

Restrictions:

None

Operation:

s ← GPR[rs] 5..0
GPR[rd] ← GPR[rt] (63–s)..0 || 0 s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DSLLV

010100

6 5 5 5 5 6

Doubleword Shift Left Logical Variable DSLLV
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 331

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

he
DSRA

Format: DSRA rd, rt, sa MIPS64

Purpose:

To execute an arithmetic right-shift of a doubleword by a fixed amount—0 to 31 bits

Description: rd ← rt >> sa (arithmetic)

The 64-bit doubleword contents of GPRrt are shifted right, duplicating the sign bit (63) into the emptied bits; t
result is placed in GPRrd. The bit-shift amount in the range 0 to 31 is specified bysa.

Restrictions:

None

Operation:

s ← 0 || sa
GPR[rd] ← (GPR[rt] 63) s || GPR[rt] 63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

DSRA

111011

6 5 5 5 5 6

Doubleword Shift Right Arithmetic DSRA
332 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

t is
DSRA32

Format: DSRA32 rd, rt, sa MIPS64

Purpose:

To execute an arithmetic right-shift of a doubleword by a fixed amount—32 to 63 bits

Description: rd ← rt >> (sa+32) (arithmetic)

The doubleword contents of GPRrt are shifted right, duplicating the sign bit (63) into the emptied bits; the resul
placed in GPRrd. The bit-shift amount in the range 32 to 63 is specified bysa+32.

Restrictions:

None

Operation:

s ← 1 || sa /* 32+sa */
GPR[rd] ← (GPR[rt] 63) s || GPR[rt] 63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

DSRA32

111111

6 5 5 5 5 6

Doubleword Shift Right Arithmetic Plus 32 DSRA32
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 333

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

t is
DSRAV

Format: DSRAV rd, rt, sa MIPS64

Purpose:

To execute an arithmetic right-shift of a doubleword by a variable number of bits

Description: rd ← rt >> rs (arithmetic)

The doubleword contents of GPRrt are shifted right, duplicating the sign bit (63) into the emptied bits; the resul
placed in GPRrd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bits in GPRrs.

Restrictions:

None

Operation:

s ← GPR[rs] 5..0
GPR[rd] ← (GPR[rt] 63) s || GPR[rt] 63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DSRAV

010111

6 5 5 5 5 6

Doubleword Shift Right Arithmetic Variable DSRAV
334 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

in
DSRL

Format: DSRL rd, rt, sa MIPS64

Purpose:

To execute a logical right-shift of a doubleword by a fixed amount0 to 31 bits

Description: rd ← rt >> sa (logical)

The doubleword contents of GPRrt are shifted right, inserting zeros into the emptied bits; the result is placed
GPRrd. The bit-shift amount in the range 0 to 31 is specified bysa.

Restrictions:

None

Operation:

s ← 0 || sa
GPR[rd] ← 0 s || GPR[rt] 63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

DSRL

111010

6 5 5 5 5 6

Doubleword Shift Right Logical DSRL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 335

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ced
DSRL32

Format: DSRL32 rd, rt, sa MIPS64

Purpose:

To execute a logical right-shift of a doubleword by a fixed amount32 to 63 bits

Description: rd ← rt >> (sa+32) (logical)

The 64-bit doubleword contents of GPRrt are shifted right, inserting zeros into the emptied bits; the result is pla
in GPRrd. The bit-shift amount in the range 32 to 63 is specified bysa+32.

Restrictions:

None

Operation:

s ← 1 || sa /* 32+sa */
GPR[rd] ← 0 s || GPR[rt] 63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

DSRL32

111110

6 5 5 5 5 6

Doubleword Shift Right Logical Plus 32 DSRL32
336 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ced
DSRLV

Format: DSRLV rd, rt, rs MIPS64

Purpose:

To execute a logical right-shift of a doubleword by a variable number of bits

Description: rd ← rt >> rs (logical)

The 64-bit doubleword contents of GPRrt are shifted right, inserting zeros into the emptied bits; the result is pla
in GPRrd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bits in GPRrs.

Restrictions:

None

Operation:

s ← GPR[rs] 5..0
GPR[rd] ← 0 s || GPR[rt] 63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DSRLV

010110

6 5 5 5 5 6

Doubleword Shift Right Logical Variable DSRLV
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 337

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

nd an
DSUB

Format: DSUB rd, rs, rt MIPS64

Purpose:

To subtract 64-bit integers; trap on overflow

Description: rd ← rs - rt

The 64-bit doubleword value in GPRrt is subtracted from the 64-bit value in GPRrs to produce a 64-bit result. If the
subtraction results in 64-bit 2’s complement arithmetic overflow, then the destination register is not modified a
Integer Overflow exception occurs. If it does not overflow, the 64-bit result is placed into GPRrd.

Restrictions:

None

Operation:

temp ← (GPR[rs] 63||GPR[rs]) – (GPR[rt] 63||GPR[rt])
if (temp 64 ≠ temp 63) then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp 63..0
endif

Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DSUBU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DSUB

101110

6 5 5 5 5 6

Doubleword Subtract DSUB
338 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

es not
viron-
DSUBU

Format: DSUBU rd, rs, rt MIPS64

Purpose:

To subtract 64-bit integers

Description: rd ← rs - rt

The 64-bit doubleword value in GPRrt is subtracted from the 64-bit value in GPRrs and the 64-bit arithmetic result
is placed into GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation: 64-bit processors

GPR[rd] ← GPR[rs] – GPR[rt]

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic en
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

DSUBU

101111

6 5 5 5 5 6

Doubleword Subtract Unsigned DSUBU
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 339

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ERET

c-

of the
address-
ERET

Format: ERET MIPS32

Purpose:

To return from interrupt, exception, or error trap.

Description:

ERET returns to the interrupted instruction at the completion of interrupt, exception, or error trap processing.
does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

The operation of the processor isUNDEFINED if an ERET is executed in the delay slot of a branch or jump instru
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier for all changes in the CP0 state that could affect the fetch and decode
instruction at the PC to which the ERET returns, such as changes to the effective ASID, user-mode state, and
ing mode.

Operation:

if Status ERL = 1 then
temp ← ErrorEPC
Status ERL ← 0

else
temp ← EPC
Status EXL ← 0

endif
if IsMIPS16Implemented() then

PC ← temp 63..1 || 0
ISAMode ← temp 0

else
PC ← temp

endif
LLbit ← 0

Exceptions:
Coprocessor Unusable Exception

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

ERET

011000

6 1 19 6

Exception Return ERET
340 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

-

FLOOR.L.fmt

Format: FLOOR.L.S fd, fs MIPS64
FLOOR.L.D fd, fs MIPS64

Purpose:

To convert an FP value to 64-bit fixed point, rounding down

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward∞
(rounding mode 3). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid Operation Enable bit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written tofd.

Restrictions:

The fieldsfs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

FLOOR.L

001011

6 5 5 5 5 6

Floating Point Floor Convert to Long Fixed Point FLOOR.L.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 341

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

Floating Point Floor Convert to Long Fixed Point (cont.) FLOOR.L.fmt
342 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

–

FLOOR.W.fmt

Format: FLOOR.W.S fd, fs MIPS32
FLOOR.W.D fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point, rounding down

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward∞
(rounding mode 3). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for type fmt andfd for word fixed point—if they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

FLOOR.W

001111

6 5 5 5 5 6

Floating Point Floor Convert to Word Fixed Point FLOOR.W.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 343

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

egion.
e-

before

e

PC is an
ranch

MB
J

Format: J target MIPS32

Purpose:

To branch within the current 256 MB-aligned region

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned r
The low 28 bits of the target address is theinstr_indexfield shifted left 2 bits. The remaining upper bits are the corr
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot,
executing the jump itself.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I:
I+1: PC ← PC GPRLEN-1..28 || instr_index || 0 2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a b
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 256
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

J

000010
instr_index

6 26

Jump J
344 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ranch,

egion.
e-

before

e

PC is an
ranch

6 MB
JAL

Format: JAL target MIPS32

Purpose:

To execute a procedure call within the current 256 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned r
The low 28 bits of the target address is theinstr_indexfield shifted left 2 bits. The remaining upper bits are the corr
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot,
executing the jump itself.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: GPR[31] ← PC + 8
I+1: PC ← PC GPRLEN-1..28 || instr_index || 0 2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a b
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 25
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

JAL

000011
instr_index

6 26

Jump and Link JAL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 345

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ch,

y

e

rchi-

n reex-
dler to

S16
target

nd bit 1

e

JALR

Format: JALR rs (rd = 31 implied) MIPS32
JALR rd, rs MIPS32

Purpose:

To execute a procedure call to an instruction address in a register

Description: rd ← return_addr, PC ← rs

Place the return address link in GPRrd. The return link is the address of the second instruction following the bran
where execution continues after a procedure call.

For processors that do not implement the MIPS16 ASE:

• Jump to the effective target address in GPRrs. Execute the instruction that follows the jump, in the branch dela
slot, before executing the jump itself.

For processors that do implement the MIPS16 ASE:

• Jump to the effective target address in GPRrs. Set theISA Mode bit to the value in GPRrs bit 0. Bit 0 of the
target address is always zero so that no Address Exceptions occur when bit 0 of the source register is on

At this time the only defined hint field value is 0, which sets default handling of JALR. Future versions of the a
tecture may define additional hint values.

Restrictions:

Register specifiersrs andrd must not be equal, because such an instruction does not have the same effect whe
ecuted. The result of executing such an instruction is undefined. This restriction permits an exception han
resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

The effective target address in GPRrs must be naturally-aligned. For processors that do not implement the MIP
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero a
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs

0

00000
rd hint

JALR

001001

6 5 5 5 5 6

Jump and Link Register JALR
346 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

s use
Operation:

I: temp ← GPR[rs]
GPR[rd] ← PC + 8

I+1: if Config1 CA = 0 then
PC ← temp

else
PC ← temp GPRLEN-1..1 || 0
ISAMode ← temp 0

endif

Exceptions:

None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link; all other link instruction
GPR 31. The default register for GPRrd, if omitted in the assembly language instruction, is GPR 31.

Jump and Link Register, cont. JALR
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 347

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

t,

S16
target

nd bit 1

hitec-

e

JR

Format: JR rs MIPS32

Purpose:

To execute a branch to an instruction address in a register

Description: PC ← rs

Jump to the effective target address in GPRrs. Execute the instruction following the jump, in the branch delay slo
before jumping.

For processors that implement the MIPS16 ASE, set theISA Modebit to the value in GPRrs bit 0. Bit 0 of the target
address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

Restrictions:

The effective target address in GPRrs must be naturally-aligned. For processors that do not implement the MIP
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero a
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

At this time the only defined hint field value is 0, which sets default handling of JR. Future versions of the arc
ture may define additional hint values.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
I+1: if Config1 CA = 0 then

PC ← temp
else

PC ← temp GPRLEN-1..1 || 0
ISAMode ← temp 0

endif

Exceptions:

None

31 26 25 21 20 11 10 6 5 0

SPECIAL

000000
rs

0

00 0000 0000
hint

JR

001000

6 5 10 5 6

Jump Register JR
348 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

,

Programming Notes:

Software should use the value 31 for thers field of the instruction word on return from a JAL, JALR, or BGEZAL
and should use a value other than 31 for remaining uses of JR.

Jump Register, cont. JR
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 349

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

tended,
LB

Format: LB rt, offset(base) MIPS32

Purpose:

To load a byte from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-ex
and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
memdoubleword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor BigEndianCPU 3

GPR[rt] ← sign_extend(memdoubleword 7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LB

100000
base rt offset

6 5 5 16

Load Byte LB
350 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

tended,
LBU

Format: LBU rt, offset(base) MIPS32

Purpose:

To load a byte from memory as an unsigned value

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-ex
and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
memdoubleword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor BigEndianCPU 3

GPR[rt] ← zero_extend(memdoubleword 7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LBU

100100
base rt offset

6 5 5 16

Load Byte Unsigned LBU
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 351

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

fetched

ero, an
LD

Format: LD rt, offset(base) MIPS64

Purpose:

To load a doubleword from memory

Description: rt ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are
and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← memdoubleword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

31 26 25 21 20 16 15 0

LD

110111
base rt offset

6 5 5 16

Load Doubleword LD
352 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

fetched
LDC1

Format: LDC1 ft, offset(base) MIPS32

Purpose:

To load a doubleword from memory to an FPR

Description: ft ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are
and placed in FPRft. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LDC1

110101
base ft offset

6 5 5 16

Load Doubleword to Floating Point LDC1
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 353

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

fetched
LDC2

Format: LDC2 rt, offset(base) MIPS32

Purpose:

To load a doubleword from memory to a Coprocessor 2 register

Description: rt ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are
and placed in Coprocessor 2 registerrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the
effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 03 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
CPR[2,rt,0] ← memdoubleword

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LDC2

110110
base rt offset

6 5 5 16

Load Doubleword to Coprocessor 2 LDC2
354 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ligned
he
es the
double-
LDL

Format: LDL rt, offset(base) MIPS64

Purpose:

To load the most-significant part of a doubleword from an unaligned memory address

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the most-significant of 8 consecutive bytes forming a doubleword(DW) in memory, starting at an arbitrary
byte boundary.

A part of DW, the most-significant 1 to 8 bytes, is in the aligned doubleword containingEffAddr. This part ofDW is
loaded appropriately into the most-significant (left) part of GPRrt, leaving the remainder of GPRrt unchanged.

Figure 12-5 illustrates this operation for big-endian byte ordering. The 8 consecutive bytes in 2..9 form an una
doubleword starting at location 2. A part ofDW, 6 bytes, is located in the aligned doubleword starting with t
most-significant byte at 2. LDL first loads these 6 bytes into the left part of the destination register and leav
remainder of the destination unchanged. The complementary LDR next loads the remainder of the unaligned
word.

31 26 25 21 20 16 15 0

LDL

011010
base rt offset

6 5 5 16

Load Doubleword Left LDL

Figure 12-5 Unaligned Doubleword Load Using LDL and LDR

Doubleword at byte 2 in big-endian memory; each memory byte contains its own address

 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Memory

a b c d e f g h GPR 24 Initial contents

2 3 4 5 6 7 g h After executing LDL $24,2($0)

2 3 4 5 6 7 8 9 Then after LDR $24,9($0)
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 355

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ithin an
or
The bytes loaded from memory to the destination register depend on both the offset of the effective address w
aligned doubleword—the low 3 bits of the address (vAddr2..0)—and the current byte-ordering mode of the process
(big- or little-endian). Figure 12-6 shows the bytes loaded for every combination of offset and byte ordering.

Figure 12-6 Bytes Loaded by LDL Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
if BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..3 || 0 3

endif
byte ← vAddr 2..0 xor BigEndianCPU 3

memdoubleword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
GPR[rt] ← memdoublworde 7+8*byte..0 || GPR[rt] 55–8*byte..0

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

Memory contents and byte offsets (vAddr2..0) Initial contents of

Destination Registermost — significance — least

0 1 2 3 4 5 6 7 ←big-endian most — significance — least

I J K L M N O P a b c d e f g h

7 6 5 4 3 2 1 0 ←little-endian offset

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

I J K L M N O P 0 P b c d e f g h

J K L M N O P h 1 O P c d e f g h

K L M N O P g h 2 N O P d e f g h

L M N O P f g h 3 M N O P e f g h

M N O P e f g h 4 L M N O P f g h

N O P d e f g h 5 K L M N O P g h

O P c d e f g h 6 J K L M N O P h

P b c d e f g h 7 I J K L M N O P

Load Doubleword Left (cont.) LDL
356 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ligned
e

ves the
double-
LDR

Format: LDR rt, offset(base) MIPS64

Purpose:

To load the least-significant part of a doubleword from an unaligned memory address

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the least-significant of 8 consecutive bytes forming a doubleword(DW) in memory, starting at an arbitrary
byte boundary.

A part of DW, the least-significant 1 to 8 bytes, is in the aligned doubleword containingEffAddr. This part ofDW is
loaded appropriately into the least-significant (right) part of GPRrt leaving the remainder of GPRrt unchanged.

Figure 12-7 illustrates this operation for big-endian byte ordering. The 8 consecutive bytes in 2..9 form an una
doubleword starting at location 2. Two bytes of theDW are located in the aligned doubleword containing th
least-significant byte at 9. LDR first loads these 2 bytes into the right part of the destination register, and lea
remainder of the destination unchanged. The complementary LDL next loads the remainder of the unaligned
word.

Figure 12-7 Unaligned Doubleword Load Using LDR and LDL

31 26 25 21 20 16 15 0

LDR

011011
base rt offset

6 5 5 16

Load Doubleword Right LDR

Doubleword at byte 2 in big-endian memory; each memory byte contains its own address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a b c d e f g h GPR 24 initial contents

2 3 4 5 6 7 g h GPR 24 after LDL $24,2($0)

2 3 4 5 6 7 8 9 GPR 24 after LDR$24,9($0)
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 357

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ithin an
or
The bytes loaded from memory to the destination register depend on both the offset of the effective address w
aligned doubleword—the low 3 bits of the address (vAddr2..0)—and the current byte-ordering mode of the process
(big- or little-endian).

Figure 12-8 shows the bytes loaded for every combination of offset and byte ordering.

Figure 12-8 Bytes Loaded by LDR Instruction

Restrictions:

None

Memory contents and byte offsets (vAddr2..0) Initial contents of

Destination Registermost — significance — least

0 1 2 3 4 5 6 7 ← big-endian most — significance — least

I J K L M N O P a b c d e f g h

7 6 5 4 3 2 1 0 ← little-endian offset

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

a b c d e f g I 0 I J K L M N O P

a b c d e f I J 1 a I J K L M N O

a b c d e I J K 2 a b I J K L M N

a b c d I J K L 3 a b c I J K L M

a b c I J K L M 4 a b c d I J K L

a b I J K L M N 5 a b c d e I J K

a I J K L M N O 6 a b c d e f I J

I J K L M N O P 7 a b c d e f g I

Load Doubleword Right (cont.) LDR
358 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
if BigEndianMem = 1 then

pAddr ← pAddr PSIZE-1..3 || 0 3

endif
byte ← vAddr 2..0 xor BigEndianCPU 3

memdoubleword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
GPR[rt] ← GPR[rt] 63..64-8*byte || memdoubleword 63..8*byte

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

Load Doubleword Right (cont.) LDR
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 359

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

fetched
LDXC1

Format: LDXC1 fd, index(base) MIPS64

Purpose:

To load a doubleword from memory to an FPR (GPR+GPR addressing)

Description: fd ← memory[base+index]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are
and placed in FPRfd. The contents of GPRindex and GPRbaseare added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr 2..0 ≠ 03 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
StoreFPR (fd, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index

0

00000
fd

LDXC1

000001

6 5 5 5 5 6

Load Doubleword Indexed to Floating Point LDXC1
360 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

tched,

ddress
LH

Format: LH rt, offset(base) MIPS32

Purpose:

To load a halfword from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fe
sign-extended, and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..3 || (pAddr 2..0 xor (ReverseEndian 2 || 0))
memdoubleword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor (BigEndianCPU 2 || 0)
GPR[rt] ← sign_extend(memdoubleword 15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 26 25 21 20 16 15 0

LH

100001
base rt offset

6 5 5 16

Load Halfword LH
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 361

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

tched,

ddress
LHU

Format: LHU rt, offset(base) MIPS32

Purpose:

To load a halfword from memory as an unsigned value

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fe
zero-extended, and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..3 || (pAddr 2..0 xor (ReverseEndian 2 || 0))
memdoubleword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor (BigEndianCPU 2 || 0)
GPR[rt] ← zero_extend(memdoubleword 15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LHU

100101
base rt offset

6 5 5 16

Load Halfword Unsigned LHU
362 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

for

it
register

ocessor.

atomi-

fail on

MW

ess is
LL

Format: LL rt, offset(base) MIPS32

Purpose:

To load a word from memory for an atomic read-modify-write

Description: rt ← memory[base+offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations
cached memory locations.

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address. The contents of the 32-b
word at the memory location specified by the aligned effective address are fetched, sign-extended to the GPR
length if necessary, and written into GPRrt.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per pr

When an LL is executed it starts an active RMW sequence replacing any other sequence that was active.

The RMW sequence is completed by a subsequent SC instruction that either completes the RMW sequence
cally and succeeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the R
sequence without attempting a write.

Restrictions:

The addressed location must be cached; if it is not, the result is undefined.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective addr
non-zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
memdoubleword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor (BigEndianCPU || 0 2)
GPR[rt] ← sign_extend(memdoubleword 31+8*byte..8*byte)
LLbit ← 1

31 26 25 21 20 16 15 0

LL

110000
base rt offset

6 5 5 16

Load Linked Word LL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 363

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Load Linked Word (cont.) LL
364 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

for

it
R

ocessor.

e.

e atomi-

lock to

MW

ess is
LLD

Format: LLD rt, offset(base) MIPS64

Purpose:

To load a doubleword from memory for an atomic read-modify-write

Description: rt ← memory[base+offset]

The LLD and SCD instructions provide primitives to implement atomic read-modify-write (RMW) operations
cached memory locations.

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address. The contents of the 64-b
doubleword at the memory location specified by the aligned effective address are fetched and written into GPrt.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per pr

When an LLD is executed it starts the active RMW sequence and replaces any other sequence that was activ

The RMW sequence is completed by a subsequent SCD instruction that either completes the RMW sequenc
cally and succeeds, or does not complete and fails.

Executing LLD on one processor does not cause an action that, by itself, would cause an SCD for the same b
fail on another processor.

An execution of LLD does not have to be followed by execution of SCD; a program is free to abandon the R
sequence without attempting a write.

Restrictions:

The addressed location must be cached; if it is not, the result is undefined.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the effective addr
non-zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← memdoubleword
LLbit ← 1

31 26 25 21 20 16 15 0

LLD

110100
base rt offset

6 5 5 16

Load Linked Doubleword LLD
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 365

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction

Load Linked Doubleword (cont.) LLD
366 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

lt is
LUI

Format: LUI rt, immediate MIPS32

Purpose:

To load a constant into the upper half of a word

Description: rt ← immediate || 0 16

The 16-bit immediateis shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit resu
sign-extended and placed into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← sign_extend(immediate || 0 16)

Exceptions:

None

31 26 25 21 20 16 15 0

LUI

001111

0

00000
rt immediate

6 5 5 16

Load Upper Immediate LUI
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 367

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ed and
LUXC1

Format: LUXC1 fd, index(base) MIPS64

Purpose:

To load a doubleword from memory to an FPR (GPR+GPR addressing), ignoring alignment

Description: fd ← memory[(base+index) PSIZE-1..3]

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetch
placed into the low word of coprocessor 1 general registerfd. The contents of GPRindexand GPRbaseare added to
form the effective address. The effective address is doubleword-aligned; EffectiveAddress2..0 are ignored.

Restrictions:

The result of this instruction is undefined if the processor is executing in 16 FP registers mode.

Operation:

vAddr ← (GPR[base]+GPR[index]) 63..3 || 0 3

(pAddr, CCA) ← AddressTranslation(vaddr, DATA, LOAD)
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
StoreFPR(ft, UNINTERPRETED, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index

0

00000
fd

LUXC1

000101

6 5 5 5 5 6

Load Doubleword Indexed Unaligned to Floating Point LUXC1
368 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

tched,

ero, an
LW

Format: LW rt, offset(base) MIPS32

Purpose:

To load a word from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fe
sign-extended to the GPR register length if necessary, and placed in GPRrt. The 16-bit signedoffsetis added to the
contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
memdoubleword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor (BigEndianCPU || 0 2)
GPR[rt] ← sign_extend(memdoubleword 31+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 26 25 21 20 16 15 0

LW

100011
base rt offset

6 5 5 16

Load Word LW
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 369

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ed and
LWC1

Format: LWC1 ft, offset(base) MIPS32

Purpose:

To load a word from memory to an FPR

Description: ft ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetch
placed into the low word of coprocessor 1 general registerft. The 16-bit signedoffset is added to the contents of
GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

/* mem is aligned 64 bits from memory. Pick out correct bytes. */
vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
memdoubleword ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
StoreFPR(ft, UNINTERPRETED_WORD,

sign_extend(memdoubleword 31+8*bytesel..8*bytesel))

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 0

LWC1

110001
base rt offset

6 5 5 16

Load Word to Floating Point LWC1
370 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ed and
LWC2

Format: LWC2 rt, offset(base) MIPS32

Purpose:

To load a word from memory to a COP2 register

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetch
placed into the low word of COP2 (Coprocessor 2) general registerrt. The 16-bit signedoffsetis added to the contents
of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 12..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
CPR[2,rt,0] ← sign_extend(memdoubleword 31+8*bytesel..8*bytesel)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 0

LWC2

110010
base rt offset

6 5 5 16

Load Word to Coprocessor 2 LWC2
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 371

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

d as a
o bits

con-

r word
nder of
LWL

Format: LWL rt, offset(base) MIPS32

Purpose:

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes ofW is in the aligned word containing theEffAddr. This part ofW is loaded into the
most-significant (left) part of the word in GPRrt. The remaining least-significant part of the word in GPRrt is
unchanged.

For 64-bit GPRrt registers, the destination word is the low-order word of the register. The loaded value is treate
signed value; the word sign bit (bit 31) is always loaded from memory and the new sign bit value is copied int
63..32.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
secutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination registe
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remai
the unaligned word

Figure 12-9 Unaligned Word Load Using LWL and LWR

31 26 25 21 20 16 15 0

LWL

100010
base rt offset

6 5 5 16

Load Word Left LWL

Word at byte 2 in big-endian memory; each memory byte contains its own address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

a b c d e f g h GPR 24 initial contents

sign bit (31) extend 2 3 g h After executing LWL $24,2($0)

sign bit (31) extend 2 3 4 5 Then after LWR $24,5($0)
372 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ithin an
or
ing.
The bytes loaded from memory to the destination register depend on both the offset of the effective address w
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the process
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte order

Figure 12-10 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

I J K L offset (vAddr1..0) a b c d e f g h

3 2 1 0 ←little-endian most — significance — least

most least

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr1..0 Little-endian byte ordering

sign bit (31) extended I J K L 0 sign bit (31) extended L f g h

sign bit (31) extended J K L h 1 sign bit (31) extended K L g h

sign bit (31) extended K L g h 2 sign bit (31) extended J K L h

sign bit (31) extended L f g h 3 sign bit (31) extended I J K L

The word sign (31) is always loaded and the value is copied into bits 63..32.

Load Word Left (con’t) LWL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 373

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ng bits
Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
if BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..3 || 0 3

endif
byte ← 0 || (vAddr 1..0 xor BigEndianCPU 2)
word ← vAddr 2 xor BigEndianCPU
memdoubleword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memdoubleword 31+32*word-8*byte..32*word || GPR[rt] 23-8*byte..0
GPR[rt] ← (temp 31) 32 || temp

Exceptions:

None

TLB Refill, TLB Invalid, Bus Error, Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroi
63..32 of the destination register when bit 31 is loaded.

Load Word Left (con’t) LWL
374 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ted as
t value
lue is

con-

gister.
LWR

Format: LWR rt, offset(base) MIPS32

Purpose:

To load the least-significant part of a word from an unaligned memory address as a signed value

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containingEffAddr. This part ofW is loaded into
the least-significant (right) part of the word in GPRrt. The remaining most-significant part of the word in GPRrt is
unchanged.

If GPR rt is a 64-bit register, the destination word is the low-order word of the register. The loaded value is trea
a signed value; if the word sign bit (bit 31) is loaded (that is, when all 4 bytes are loaded), then the new sign bi
is copied into bits 63..32. If bit 31 is not loaded, the value of bits 63..32 is implementation dependent; the va
either unchanged or a copy of the current value of bit 31.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
secutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is in the aligned word con-
taining the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destination re
Next, the complementary LWL loads the remainder of the unaligned word.

31 26 25 21 20 16 15 0

LWR

100110
base rt offset

6 5 5 16

Load Word Right LWR
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 375

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ithin an
or
ing.
Figure 12-11 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effective address w
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the process
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte order

Load Word Right (cont.) LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

a b c d e f g h GPR 24 initial contents

no cng or sign bit
(31) extend e f 4 5 After executing LWR $24,5($0)

sign bit (31) extend 2 3 4 5 Then after LWL $24,2($0)
376 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Figure 12-12 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

I J K L offset (vAddr1..0) a b c d e f g h

3 2 1 0 ←little-endian most — significance — least

most least

— significance —

Destination 64-bit register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr1..0 Little-endian byte ordering

no cng or sign extend e f g I 0 sign bit (31) extended I J K L

no cng or sign extend e f I J 1 no cng or sign extend e I J K

no cng or sign extend e I J K 2 no cng or sign extend e f I J

sign bit (31) extended I J K L 3 no cng or sign extende f g I

The word sign (31) is always loaded and the value is copied into bits 63..32.

Load Word Right (cont.) LWR
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 377

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ng bits
Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
if BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..3 || 0 3

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

word ← vAddr 2 xor BigEndianCPU
memdoubleword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← GPR[rt] 31..32-8*byte || memdoubleword 31+32*word..32*word+8*byte
if byte = 4 then

utemp ← (temp 31) 32/* loaded bit 31, must sign extend */
else

/* one of the following two behaviors: */
utemp ← GPR[rt] 63..32 /* leave what was there alone */
utemp ← (GPR[rt] 31) 32 /* sign-extend bit 31 */

endif
GPR[rt] ← utemp || temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroi
63..32 of the destination register when bit 31 is loaded.

Load Word Right (cont.) LWR
378 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

tched,

ero, an
LWU

Format: LWU rt, offset(base) MIPS64

Purpose:

To load a word from memory as an unsigned value

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fe
zero-extended, and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
memdoubleword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr 2..0 xor (BigEndianCPU || 0 2)
GPR[rt] ← 0 32 || memdoubleword 31+8*byte..8*byte

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

31 26 25 21 20 16 15 0

LWU

100111
base rt offset

6 5 5 16

Load Word Unsigned LWU
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 379

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ed and
LWXC1

Format: LWXC1 fd, index(base) MIPS64

Purpose:

To load a word from memory to an FPR (GPR+GPR addressing)

Description: fd ← memory[base+index]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetch
placed into the low word of coprocessor 1 general registerfd. The contents of GPRindexand GPRbaseare added to
form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
memdoubleword ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD,

sign_extend(memdoubleword 31+8*bytesel..8*bytesel))

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index

0

00000
fd

LWXC1

000000

6 5 5 5 5 6

Load Word Indexed to Floating Point LWXC1
380 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

d

on are
MADD

Format: MADD rs, rt MIPS32

Purpose:

To multiply two words and add the result to Hi, Lo

Description: (HI,LO) ← (HI,LO) + (rs × rt)

The 32-bit word value in GPRrs is multiplied by the 32-bit word value in GPRrt, treating both operands as signe
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values ofHI31..0andLO31..0.. The
most significant 32 bits of the result are sign-extended and written intoHI and the least signficant 32 bits are
sign-extended and written intoLO. No arithmetic exception occurs under any circumstances.

Restrictions:

If GPRsrs or rt do not contain sign-extended 32-bit values (bits 63..31 equal), then the results of the operati
UNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (HI 31..0 || LO 31..0) + (GPR[rs] 31..0 × GPR[rt] 31..0)
HI ← sign_extend(temp 63..32)
LO ← sign_extend(temp 31..0)

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

0000

0

00000

MADD

000000

6 5 5 5 5 6

Multiply and Add Word to Hi,Lo MADD
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 381

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

unding
MADD.fmt

Format: MADD.S fd, fr, fs, ft MIPS64
MADD.D fd, fr, fs, ft MIPS64

Purpose:

To perform a combined multiply-then-add of FP values

Description: fd ← (fs × ft) + fr

The value in FPRfs is multiplied by the value in FPRft to produce an intermediate product. The value in FPRfr is
added to the product. The result sum is calculated to infinite precision, rounded according to the current ro
mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs ×fmt vft) +fmt vfr)

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

MADD

100
fmt

6 5 5 5 5 3 3

Floating Point Multiply Add MADD.fmt
382 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Multiply Add (cont.) MADD.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 383

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

d

on are
MADDU

Format: MADDU rs, rt MIPS32

Purpose:

To multiply two unsigned words and add the result to Hi, Lo.

Description: (HI,LO) ← (HI,LO) + (rs × rt)

The 32-bit word value in GPRrs is multiplied by the 32-bit word value in GPRrt, treating both operands as unsigne
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values ofHI31..0andLO31..0.. The
most significant 32 bits of the result are sign-extended and written intoHI and the least signficant 32 bits are
sign-extended and written intoLO. No arithmetic exception occurs under any circumstances.

Restrictions:

If GPRsrs or rt do not contain sign-extended 32-bit values (bits 63..31 equal), then the results of the operati
UNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (HI 31..0 || LO 31..0) + ((0 32 || GPR[rs] 31..0) × (0 32 || GPR[rt] 31..0))
HI ← sign_extend(temp 63..32)
LO ← sign_extend(temp 31..0)

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MADDU

000001

6 5 5 5 5 6

Multiply and Add Unsigned Word to Hi,Lo MADDU
384 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

loaded
sel field
MFC0

Format: MFC0 rt, rd MIPS32
MFC0 rt, rd, sel MIPS32

Purpose:

To move the contents of a coprocessor 0 register to a general register.

Description: rt ← CPR[0,rd,sel]

The contents of the coprocessor 0 register specified by the combination of rd and sel are sign-extended and
into general register rt. Note that not all coprocessor 0 registers support the sel field. In those instances, the
must be zero.

Restrictions:

The results areUNDEFINED if coprocessor 0 does not contain a register as specified byrd andsel.

Operation:

data ← CPR[0,rd,sel] 31..0
GPR[rt] ← sign_extend(data)

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

MF

00000
rt rd

0

00000000
sel

6 5 5 5 8 3

Move from Coprocessor 0 MFC0
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 385

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
MFC1

Format: MFC1 rt, fs MIPS32

Purpose:

To copy a word from an FPU (CP1) general register to a GPR

Description: rt ← fs

The contents of FPR fs are sign-extended and loaded into general register rt.

Restrictions:

None

Operation:
data ← ValueFPR(fs, UNINTERPRETED_WORD) 31..0
GPR[rt] ← sign_extend(data)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP1

010001

MF

00000
rt fs

0

000 0000 0000

6 5 5 5 11

Move Word From Floating Point MFC1
386 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

d by
MFC2

Format: MFC2 rt, rd MIPS32
MFC2, rt, rd, sel MIPS32

Purpose:

To copy a word from a COP2 general register to a GPR

Description: rt ← CPR[2,rd,sel]

The contents of the lower 32-bits of GPRrt are sign-extended and placed into the coprocessor 2 register specifie
therd andselfields. Note that not all coprocessor 2 registers may support theselfield. In those instances, theselfield
must be zero.

Restrictions:

The results areUNPREDICTABLE if coprocessor 2 does not contain a register as specified byrd andsel.

Operation:

data ← CPR[2,rd,sel] 31..0
GPR[rt] ← sign_extend(data)

Exceptions:

Coprocessor Unusable

31 26 25 21 20 16 15 11 10 3 2 0

COP2

010010

MF

00000
rt rd

0

000 0000 0
sel

6 5 5 5 8 3

Move Word From Coprocessor 2 MFC2
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 387

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
MFHI

Format: MFHI rd MIPS32

Purpose:

To copy the special purposeHI register to a GPR

Description: rd ← HI

The contents of special registerHI are loaded into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← HI

Exceptions:

None

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFHI

010000

6 10 5 5 6

Move From HI Register MFHI
388 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
MFLO

Format: MFLO rd MIPS32

Purpose:

To copy the special purposeLO register to a GPR

Description: rd ← LO

The contents of special registerLO are loaded into GPRrd.

Restrictions: None

Operation:
GPR[rd] ← LO

Exceptions:

None

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFLO

010010

6 10 5 5 6

Move From LO Register MFLO
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 389

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
MOV.fmt

Format: MOV.S fd, fs MIPS32
MOV.D fd, fs MIPS32
Purpose:

To move an FP value between FPRs

Description: fd ← fs

The value in FPRfs is placed into FPRfd. The source and destination are values in formatfmt.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

MOV

000110

6 5 5 5 5 6

Floating Point Move MOV.fmt
390 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
MOVF

Format: MOVF rd, rs, cc MIPS32

Purpose:

To test an FP condition code then conditionally move a GPR

Description: if cc = 0 then rd ← rs

If the floating point condition code specified byCC is zero, then the contents of GPRrs are placed into GPRrd.

Restrictions:

None

Operation:

if FPConditionCode(cc) = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 18 17 16 15 11 10 6 5 0

SPECIAL

000000
rs cc

0

0

tf

0
rd

0

00000

MOVCI

000001

6 5 3 1 1 5 5 6

Move Conditional on Floating Point False MOVF
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 391

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

be
MOVF.fmt

Format: MOVF.S fd, fs, cc MIPS32
MOVF.D fd, fs, cc MIPS32
Purpose:

To test an FP condition code then conditionally move an FP value

Description: if cc = 0 then fd ← fs

If the floating point condition code specified byCC is zero, then the value in FPRfs is placed into FPRfd. The source
and destination are values in formatfmt.

If the condition code is not zero, then FPRfs is not copied and FPRfd retains its previous value in formatfmt. If fd did
not contain a value either in formatfmt or previously unused data from a load or move-to operation that could
interpreted in formatfmt, then the value offd becomesUNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE . The operand must be a value in formatfmt; if it is not, the result isUNPREDITABLE and the value of
the operand FPR becomesUNPREDICTABLE .

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1

010001
fmt cc

0

0

tf

0
fs fd

MOVCF

010001

6 5 3 1 1 5 5 6

Floating Point Move Conditional on Floating Point False MOVF.fmt
392 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Operation:

if fmt ≠ PS
if FPConditionCode(cc) = 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

else
mask ← 0
if FPConditionCode(cc+0) = 0 then mask ← mask or 0xF0 endif
if FPConditionCode(cc+1) = 0 then mask ← mask or 0x0F endif
StoreFPR(fd, PS, ByteMerge(mask, fd, fs))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Floating Point False (cont.) MOVF.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 393

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

-

MOVN

Format: MOVN rd, rs, rt MIPS32

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if rt ≠ 0 then rd ← rs

If the value in GPRrt is not equal to zero, then the contents of GPRrs are placed into GPRrd.

Restrictions:

None

Operation:

if GPR[rt] ≠ 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The non-zero value tested here is thecondition trueresult from the SLT, SLTI, SLTU, and SLTIU comparison instruc
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MOVN

001011

6 5 5 5 5 6

Move Conditional on Not Zero MOVN
394 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ter-
MOVN.fmt

Format: MOVN.S fd, fs, rt MIPS32
MOVN.D fd, fs, rt MIPS32

Purpose:

To test a GPR then conditionally move an FP value

Description: if rt ≠ 0 then fd ← fs

If the value in GPRrt is not equal to zero, then the value in FPRfs is placed in FPRfd. The source and destination are
values in formatfmt.

If GPR rt contains zero, then FPRfs is not copied and FPRfd contains its previous value in formatfmt. If fd did not
contain a value either in formatfmt or previously unused data from a load or move-to operation that could be in
preted in formatfmt, then the value offd becomesUNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt rt fs fd

MOVN

010011

6 5 5 5 5 6

Floating Point Move Conditional on Not Zero MOVN.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 395

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Operation:

if GPR[rt] ≠ 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Not Zero MOVN.fmt
396 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
MOVT

Format: MOVT rd, rs, cc MIPS32

Purpose:

To test an FP condition code then conditionally move a GPR

Description: if cc = 1 then rd ← rs

If the floating point condition code specified byCC is one, then the contents of GPRrs are placed into GPRrd.

Restrictions:

None

Operation:

if FPConditionCode(cc) = 1 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 18 17 16 15 11 10 6 5 0

SPECIAL

000000
rs cc

0

0

tf

1
rd

0

00000

MOVCI

000001

6 5 3 1 1 5 5 6

Move Conditional on Floating Point True MOVT
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 397

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

be
MOVT.fmt

Format: MOVT.S fd, fs, cc MIPS32
MOVT.D fd, fs, cc MIPS32

Purpose:

To test an FP condition code then conditionally move an FP value

Description: if cc = 1 then fd ← fs

If the floating point condition code specified byCC is one, then the value in FPRfs is placed into FPRfd. The source
and destination are values in formatfmt.

If the condition code is not one, then FPRfs is not copied and FPRfd contains its previous value in formatfmt. If fd
did not contain a value either in formatfmt or previously unused data from a load or move-to operation that could
interpreted in formatfmt, then the value offd becomes undefined.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE . The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value
of the operand FPR becomesUNPREDICTABLE .

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1

010001
fmt cc

0

0

tf

1
fs fd

MOVCF

010001

6 5 3 1 1 5 5 6

Floating Point Move Conditional on Floating Point True MOVT.fmt
398 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Operation:

if fmt ≠ PS
if FPConditionCode(cc) = 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

else
mask ← 0
if FPConditionCode(cc+0) = 0 then mask ← mask or 0xF0 endif
if FPConditionCode(cc+1) = 0 then mask ← mask or 0x0F endif
StoreFPR(fd, PS, ByteMerge(mask, fd, fs))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Floating Point True MOVT.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 399

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

-

MOVZ

Format: MOVZ rd, rs, rt MIPS32

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if rt = 0 then rd ← rs

If the value in GPRrt is equal to zero, then the contents of GPRrs are placed into GPRrd.

Restrictions:

None

Operation:

if GPR[rt] = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The zero value tested here is thecondition falseresult from the SLT, SLTI, SLTU, and SLTIU comparison instruc
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MOVZ

001010

6 5 5 5 5 6

Move Conditional on Zero MOVZ
400 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

l-

eted
MOVZ.fmt

Format: MOVZ.S fd, fs, rt MIPS32
MOVZ.D fd, fs, rt MIPS32

Purpose:

To test a GPR then conditionally move an FP value

Description: if rt = 0 then fd ← fs

If the value in GPRrt is equal to zero then the value in FPRfs is placed in FPRfd. The source and destination are va
ues in formatfmt.

If GPR rt is not zero, then FPRfs is not copied and FPRfd contains its previous value in formatfmt. If fd did not con-
tain a value either in formatfmt or previously unused data from a load or move-to operation that could be interpr
in formatfmt, then the value offd becomesUNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt rt fs fd

MOVZ

010010

6 5 5 5 5 6

Floating Point Move Conditional on Zero MOVZ.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 401

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Operation:

if GPR[rt] = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Zero (cont.) MOVZ.fmt
402 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

s,

on are
MSUB

Format: MSUB rs, rt MIPS32

Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (HI,LO) ← (HI,LO) - (rs × rt)

The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as signed value
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values ofHI31..0andLO31..0.. The
most significant 32 bits of the result are sign-extended and written intoHI and the least signficant 32 bits are
sign-extended and written intoLO. No arithmetic exception occurs under any circumstances.

Restrictions:

If GPRsrs or rt do not contain sign-extended 32-bit values (bits 63..31 equal), then the results of the operati
UNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (HI 31..0 || LO 31..0) - (GPR[rs] 31..0 × GPR[rt] 31..0)
HI ← sign_extend(temp 63..32)
LO ← sign_extend(temp 31..0)

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MSUB

000100

6 5 5 5 5 6

Multiply and Subtract Word to Hi,Lo MSUB
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 403

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

current
MSUB.fmt

Format: MSUB.S fd, fr, fs, ft MIPS64
MSUB.D fd, fr, fs, ft MIPS64

Purpose:

To perform a combined multiply-then-subtract of FP values

Description: fd ← (fs × ft) − fr

The value in FPRfs is multiplied by the value in FPRft to produce an intermediate product. The value in FPRfr is
subtracted from the product. The subtraction result is calculated to infinite precision, rounded according to the
rounding mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs ×fmt vft) −fmt vfr))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

MSUB

101
fmt

6 5 5 5 5 3 3

Floating Point Multiply Subtract MSUB.fmt
404 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Multiply Subtract (cont.) MSUB.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 405

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

d

on are
MSUBU

Format: MSUBU rs, rt MIPS32

Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (HI,LO) ← (HI,LO) - (rs × rt)

The 32-bit word value in GPRrs is multiplied by the 32-bit word value in GPRrt, treating both operands as unsigne
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values ofHI31..0 and
LO31..0.. The most significant 32 bits of the result are sign-extended and written intoHI and the least signficant 32
bits are sign-extended and written intoLO. No arithmetic exception occurs under any circumstances.

Restrictions:

If GPRsrs or rt do not contain sign-extended 32-bit values (bits 63..31 equal), then the results of the operati
UNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (HI 31..0 || LO 31..0) - ((0 32 || GPR[rs] 31..0) × (0 32 || GPR[rt] 31..0))
HI ← sign_extend(temp 63..32)
LO ← sign_extend(temp 31..0)

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MSUBU

000101

6 5 5 5 5 6

Multiply and Subtract Word to Hi,Lo MSUBU
406 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

f rd and
ro.
MTC0

Format: MTC0 rt, rd MIPS32
MTC0 rt, rd, sel MIPS32

Purpose:

To move the contents of a general register to a coprocessor 0 register.

Description: CPR[r0, rd, sel] ← rt

The contents of general register rt are loaded into the coprocessor 0 register specified by the combination o
sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to ze

Restrictions:

The results areUNDEFINED if coprocessor 0 does not contain a register as specified byrd andsel.

Operation:

if (Width(CPR[0,rd,sel]) = 64) then
CPR[0,rd,sel] ← data

else
CPR[0,rd,sel] ← data 31..0

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

MT

00100
rt rd

0

0000 000
sel

6 5 5 5 8 3

Move to Coprocessor 0 MTC0
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 407

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
MTC1

Format: MTC1 rt, fs MIPS32

Purpose:

To copy a word from a GPR to an FPU (CP1) general register

Description: fs ← rt

The low word in GPRrt is placed into the low word of floating point (Coprocessor 1) general registerfs. If
Coprocessor 1 general registers are 64 bits wide, bits 63..32 of registerfs become undefined.

Restrictions:

None

Operation:

data ← GPR[rt] 31..0
StoreFPR(fs, UNINTERPRETED_WORD, data)

Exceptions:

Coprocessor Unusable

31 26 25 21 20 16 15 11 10 0

COP1

010001

MT

00100
rt fs

0

000 0000 0000

6 5 5 5 11

Move Word to Floating Point MTC1
408 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

l

MTC2

Format: MTC2 rt, rd MIPS32
MTC2 rt, rd, sel MIPS32

Purpose:

To copy a word from a GPR to a COP2 general register

Description: CPR[2,rd,sel] ← rt

The low word in GPRrt is placed into the low word of coprocessor 2 general register specified by therd andsel
fields. If coprocessor 2 general registers are 64 bits wide, bits 63..32 of registerrd become undefined. Note that not al
coprocessor 2 registers may support thesel field. In those instances, thesel field must be zero.

Restrictions:

The results areUNPREDICTABLE if coprocessor 2 does not contain a register as specified byrd andsel.

Operation:

data ← GPR[rt] 31..0
CPR[2,rd,sel] ← data

Exceptions:

Coprocessor Unusable

31 26 25 21 20 16 15 11 10 0

COP2

010010

MT

00100
rt rd

0

000 0000 0
sel

6 5 5 5 8 3

Move Word to Coprocessor 2 MTC2
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 409

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
MTHI

Format: MTHI rs MIPS32

Purpose:

To copy a GPR to the special purposeHI register

Description: HI ← rs

The contents of GPRrs are loaded into special registerHI.

Restrictions:

A computed result written to theHI/LO pair by DIV, DIVU, DDIV, DDIVU, DMULT, DMULTU, MULT, or MULTU
must be read by MFHI or MFLO before a new result can be written into eitherHI or LO.

Operation:

HI ← GPR[rs]

Exceptions:

None

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTHI

010001

6 5 15 6

Move to HI Register MTHI
410 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
MTLO

Format: MTLO rs MIPS32

Purpose:

To copy a GPR to the special purposeLO register

Description: LO ← rs

The contents of GPRrs are loaded into special registerLO.

Restrictions:

A computed result written to theHI/LO pair by DIV, DIVU, DDIV, DDIVU, DMULT, DMULTU, MULT, or MULTU
must be read by MFHI or MFLO before a new result can be written into eitherHI or LO.

Operation:

LO ← GPR[rs]

Exceptions:

None

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTLO

010011

6 5 15 6

Move to LO Register MTLO
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 411

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

s,

ir-

hen
MUL

Format: MUL rd, rs, rt MIPS32

Purpose:

To multiply two words and write the result to a GPR.

Description: rd ← rs × rt

The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as signed value
to produce a 64-bit result. The least significant 32 bits of the product are sign-extended and written to GPRrd. The
contents ofHI andLO areUNPREDICTABLE after the operation. No arithmetic exception occurs under any c
cumstances.

Restrictions:

On 64-bit processors, if either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), t
the result of the operation is UNPREDICTABLE.

Note that this instruction does not provide the capability of writing the result to the HI and LO registers.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UndefinedResult()

endif
temp <- GPR[rs] * GPR[rt]
GPR[rd] <- sign_extend(temp 31..0)
HI <- UNPREDICTABLE
LO <- UNPREDICTABLE

Exceptions:

None

Programming Notes:

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

MUL

000010

6 5 5 5 5 6

Multiply Word to GPR MUL
412 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

d-
MUL.fmt

Format: MUL.S fd, fs, ft MIPS32
MUL.D fd, fs, ft MIPS32

Purpose:

To multiply FP values

Description: fd ← fs × ft

The value in FPRfs is multiplied by the value in FPRft. The result is calculated to infinite precision, rounded accor
ing to the current rounding mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) ×fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

MUL

000010

6 5 5 5 5 6

Floating Point Multiply MUL.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 413

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

s,
egister

hen
MULT

Format: MULT rs, rt MIPS32

Purpose:

To multiply 32-bit signed integers

Description: (LO, HI) ← rs × rt

The 32-bit word value in GPRrt is multiplied by the 32-bit value in GPRrs, treating both operands as signed value
to produce a 64-bit result. The low-order 32-bit word of the result is sign-extended and placed into special r
LO, and the high-order 32-bit word is sign-extended and placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), t
the result of the operation is UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UndefinedResult()

endif
prod ← GPR[rs] 31..0 × GPR[rt] 31..0
LO ← sign_extend(prod 31..0)
HI ← sign_extend(prod 63..32)

Exceptions:

None

Programming Notes:

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

MULT

011000

6 5 5 10 6

Multiply Word MULT
414 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

l-
l regis-

hen
MULTU

Format: MULTU rs, rt MIPS32

Purpose:

To multiply 32-bit unsigned integers

Description: (LO, HI) ← rs × rt

The 32-bit word value in GPRrt is multiplied by the 32-bit value in GPRrs, treating both operands as unsigned va
ues, to produce a 64-bit result. The low-order 32-bit word of the result is sign-extended and placed into specia
terLO, and the high-order 32-bit word is sign-extended and placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), t
the result of the operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UndefinedResult()

endif
prod ← (0 || GPR[rs] 31..0) × (0 || GPR[rt] 31..0)
LO ← sign_extend(prod 31..0)
HI ← sign_extend(prod 63..32)

Exceptions:

None

Programming Notes:

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

MULTU

011001

6 5 5 10 6

Multiply Unsigned Word MULTU
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 415

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

er-
NEG.fmt

Format: NEG.S fd, fs MIPS32
NEG.D fd, fs MIPS32

Purpose:

To negate an FP value

Description: fd ← −fs

The value in FPRfs is negated and placed into FPRfd. The value is negated by changing the sign bit value. The op
and and result are values in formatfmt. This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE . The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value
of the operand FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

NEG

000111

6 5 5 5 5 6

Floating Point Negate NEG.fmt
416 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
NMADD.fmt

Format: NMADD.S fd, fr, fs, ft MIPS64
NMADD.D fd, fr, fs, ft MIPS64

Purpose:

To negate a combined multiply-then-add of FP values

Description: fd ← − ((fs × ft) + fr)

The value in FPRfs is multiplied by the value in FPRft to produce an intermediate product. The value in FPRfr is
added to the product.

The result sum is calculated to infinite precision, rounded according to the current rounding mode inFCSR, negated
by changing the sign bit, and placed into FPRfd. The operands and result are values in formatfmt.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, −(vfr +fmt (vfs ×fmt vft)))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

NMADD

110
fmt

6 5 5 5 5 3 3

Floating Point Negative Multiply Add NMADD.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 417

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Negative Multiply Add (cont.) NMADD.fmt
418 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
NMSUB.fmt

Format: NMSUB.S fd, fr, fs, ft MIPS64
NMSUB.D fd, fr, fs, ft MIPS64

Purpose:

To negate a combined multiply-then-subtract of FP values

Description: fd ← - ((fs × ft) - fr)

The value in FPRfs is multiplied by the value in FPRft to produce an intermediate product. The value in FPRfr is
subtracted from the product.

The result is calculated to infinite precision, rounded according to the current rounding mode inFCSR, negated by
changing the sign bit, and placed into FPRfd. The operands and result are values in formatfmt.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, −((vfs ×fmt vft) −fmt vfr))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

NMSUB

111
fmt

6 5 5 5 5 3 3

Floating Point Negative Multiply Subtract NMSUB.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 419

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Negative Multiply Subtract (cont.) NMSUB.fmt
420 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
NOR

Format: NOR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical NOT OR

Description: rd ← rs NOR rt

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical NOR operation. The result is
placed into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

NOR

100111

6 5 5 5 5 6

Not Or NOR
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 421

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
OR

Format: OR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical OR

Description: rd ← rs or rt

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical OR operation. The result is
placed into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

OR

100101

6 5 5 5 5 6

Or OR
422 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
ORI

Format: ORI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical OR with a constant

Description: rt ← rs or immediate

The 16-bitimmediateis zero-extended to the left and combined with the contents of GPRrs in a bitwise logical OR
operation. The result is placed into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] or zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ORI

001101
rs rt immediate

6 5 5 16

Or Immediate ORI
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 423

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

gram.

eption, the
tion that

emory
store to
PREF

Format: PREF hint,offset(base) MIPS32

Purpose:

To move data between memory and cache.

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signedoffsetto the contents of GPRbaseto form an effective byte address. Thehint field sup-
plies information about the way that the data is expected to be used.

PREF is an advisory instruction that may change the performance of the program. However, for allhint values and all
effective addresses, it neither changes the architecturally visible state nor does it alter the meaning of the pro

PREF does not cause addressing-related exceptions. If the address specified would cause an addressing exc
exception condition is ignored and no data movement occurs.However even if no data is prefetched, some ac
is not architecturally visible, such as writeback of a dirty cache line, can take place.

PREF never generates a memory operation for a location with anuncached memory access type.

If PREF results in a memory operation, the memory access type used for the operation is determined by the m
access type of the effective address, just as it would be if the memory operation had been caused by a load or
the effective address.

Thehint field supplies information about the way the data is expected to be used. Ahint value cannot cause an action
to modify architecturally visible state.

31 26 25 21 20 16 15 0

PREF

110011
base hint offset

6 5 5 16

Prefetch PREF
424 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ans-
to be
Any of the following conditions causes the core to treat a PREF instruction as a NOP.

• A reservedhint value is used

• The address has a translation error

• The address maps to an uncacheable page

• The cache controller is not idle as there are outstanding transactions, i.e. refills, loads, stores, etc.

In all other cases, except whenhint equals 25, execution of the PREF instruction initiates an external bus read tr
action. PREF is a non-blocking operation and does not cause the pipeline to stall while waiting for the data
returned.

Prefetch (cont.) PREF
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 425

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Table 12-28 Values of thehint Field for the PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load
Use: Prefetched data is expected to be read (not modified).

Action: Fetch data as if for a load.

1 store
Use: Prefetched data is expected to be stored or modified.

Action: Fetch data as if for a store.

2-3 Reserved Reserved - treated as a NOP.

4 load_streamed

Use: Prefetched data is expected to be read (not modified) but not
reused extensively; it “streams” through cache.

Action: Fetch data as if for a load.

5 store_streamed

Use: Prefetched data is expected to be stored or modified but not
reused extensively; it “streams” through cache.

Action: Fetch data as if for a store.

6 load_retained

Use: Prefetched data is expected to be read (not modified) and
reused extensively; it should be “retained” in the cache.

Action: Fetch data as if for a load.

7 store_retained

Use: Prefetched data is expected to be stored or modified and reused
extensively; it should be “retained” in the cache.

Action: Fetch data as if for a store.

8-24 Reserved Reserved - treated as a NOP.

Prefetch (cont.) PREF
426 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
25 writeback_invalidate
(also known as “nudge”)

Action: Schedule a writeback of any dirty data. The cache line is
marked as invalid upon completion of the writeback or if the line
was found clean.

26-29 Reserved Reserved - treated as a NOP.

30 Reserved Reserved - treated as a NOP.

31 Reserved Reserved - treated as a NOP.

Table 12-28 Values of thehint Field for the PREF Instruction
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 427

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

e TLB.
prefetch

ss pointer
Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot prefetch data from a mapped location unless the translation for that location is present in th
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so
may not be effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using an addre
value before the validity of a pointer is determined.

Prefetch (cont.) PREF
428 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ted by
PREFX

Format: PREFX hint, index(base) MIPS64

Purpose:

To move data between memory and cache.

Description: prefetch_memory[base+index]

PREFX adds the contents of GPRindexto the contents of GPRbaseto form an effective byte address. Thehint field
supplies information about the way the data is expected to be used.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemen
the two. Refer to the PREF instruction for all other details, including the encoding of thehint field.

Restrictions:

None

Operation:

vAddr ← GPR[base] + GPR[index]
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

Refer to the corresponding section in the PREF instruction description.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index hint

0

00000

PREFX

001111

6 5 5 5 5 6

Prefetch Indexed PREFX
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 429

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

n

nt stan-
e exact

ch case
RECIP.fmt

Format: RECIP.S fd, fs MIPS64
RECIP.D fd, fs MIPS64

Purpose:

To approximate the reciprocal of an FP value (quickly)

Description: fd ← 1.0 / fs

The reciprocal of the value in FPRfs is approximated and placed into FPRfd. The operand and result are values i
formatfmt.

The numeric accuracy of this operation does not meet the accuracy specified by the IEEE 754 Floating Poi
dard. The computed result differs from the both the exact result and the IEEE-mandated representation of th
result by no more than one unit in the least-significant place (ULP).

The computed result is not affected by the current rounding mode in FCSR unless an underflow occurs in whi
the default result (Zero or MinNorm) is determined by the current rounding mode in FCSR.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of RECIP.D isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

RECIP

010101

6 5 5 5 5 6

Reciprocal Approximation RECIP.fmt
430 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

Reciprocal Approximation (cont.) RECIP.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 431

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ar-

set in
ROUND.L.fmt

Format: ROUND.L.S fd, fs MIPS64
ROUND.L.D fd, fs MIPS64

Purpose:

To convert an FP value to 64-bit fixed point, rounding to nearest

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to ne
est/even (rounding mode 0). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is
theFCSR. If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 263–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for long fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

ROUND.L

001000

6 5 5 5 5 6

Floating Point Round to Long Fixed Point ROUND.L.fmt
432 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow

Floating Point Round to Long Fixed Point (cont.) ROUND.L.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 433

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ven

set in
ROUND.W.fmt

Format: ROUND.W.S fd, fs MIPS32
ROUND.W.D fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point, rounding to nearest

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 32-bit word fixed point format rounding to nearest/e
(rounding mode 0). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is
theFCSR. If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for word fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

ROUND.W

001100

6 5 5 5 5 6

Floating Point Round to Word Fixed Point ROUND.W.fmt
434 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow

Floating Point Round to Word Fixed Point (cont). ROUND.W.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 435

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

nt stan-
ct result
RSQRT.fmt

Format: RSQRT.S fd, fs MIPS64
RSQRT.D fd, fs MIPS64

Purpose:

To approximate the reciprocal of the square root of an FP value (quickly)

Description: fd ← 1.0 / sqrt(fs)

The reciprocal of the positive square root of the value in FPRfs is approximated and placed into FPRfd. The operand
and result are values in formatfmt.

The numeric accuracy of this operation does not meet the accuracy specified by the IEEE 754 Floating Poi
dard. The computed result differs from both the exact result and the IEEE-mandated representation of the exa
by no more than two units in the least-significant place (ULP).

The computed result is not affected by the current rounding mode in FCSR.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of RSQRT.D isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

RSQRT

010110

6 5 5 5 5 6

Reciprocal Square Root Approximation RSQRT.fmt
436 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Reciprocal Square Root Approximation (cont.) RSQRT.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 437

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

The
SB

Format: SB rt, offset(base) MIPS32

Purpose:

To store a byte to memory

Description: memory[base+offset] ← rt

The least-significant 8-bit byte of GPRrt is stored in memory at the location specified by the effective address.
16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
bytesel ← vAddr 2..0 xor BigEndianCPU 3

datadoubleword ← GPR[rt] 63–8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, BYTE, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

31 26 25 21 20 16 15 0

SB

101000
base rt offset

6 5 5 16

Store Byte SB
438 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ched

omplete

e

il; the

ion of
ds.

address
SC

Format: SC rt, offset(base) MIPS32

Purpose:

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[base+offset] ← rt, rt ← 1 else rt ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for ca
memory locations.

The 16-bit signedoffset is added to the contents of GPRbaseto form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To c
the RMW sequence atomically, the following occur:

• The least-significant 32-bit word of GPRrt is stored into memory at the location specified by the aligned effectiv
address.

• A 1, indicating success, is written into GPRrt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPRrt.

If the following event occurs between the execution of LL and SC, the SC fails:

• An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fa
success or failure is not predictable. Portable programs should not cause one of these events.

• A load, store, or prefetch is executed on the processor executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous reg
virtual memory. The region does not have to be aligned, other than the alignment required for instruction wor

The following conditions must be true or the result of the SC is undefined:

• Execution of SC must have been preceded by execution of an LL instruction.

• A RMW sequence executed without intervening exceptions must use the same address in the LL and SC. The
is the same if the virtual address, physical address, and cache-coherence algorithm are identical.

31 26 25 21 20 16 15 0

SC

111000
base rt offset

6 5 5 16

Store Conditional Word SC
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 439

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ero, an
Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
datadoubleword ← GPR[rt] 63-8*bytesel..0 || 0 8*bytesel

if LLbit then
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

endif
GPR[rt] ← 0 63 || LLbit

Store Conditional Word (cont.) SC
440 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ples of
re emu-

n

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some exam
these are arithmetic operations that trap, system calls, and floating point operations that trap or require softwa
lation assistance.

LL and SC function on a single processor forcached noncoherentmemory so that parallel programs can be run o
uniprocessor systems that do not supportcached coherent memory access types.

Store Conditional Word (cont.) SC
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 441

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

s.

y fail;

egion
words.)

D. The
SCD

Format: SCD rt, offset(base) MIPS64

Purpose:

To store a doubleword to memory to complete an atomic read-modify-write

Description:if atomic_update then memory[base+offset] ← rt, rt ← 1 else rt ← 0

The 16-bit signedoffset is added to the contents of GPRbaseto form an effective address.

The SCD completes the RMW sequence begun by the preceding LLD instruction executed on the processor.

If it would complete the RMW sequence atomically, the following occur:

• The 64-bit doubleword of GPRrt is stored into memory at the location specified by the aligned effective addres

• A 1, indicating success, is written into GPRrt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPRrt.

If the following event occurs between the execution of LLD and SCD, the SCD fails:

• An ERET instruction is executed.

If either of the following events occurs between the execution of LLD and SCD, the SCD may succeed or it ma
success or failure is not predictable. Portable programs should not cause these events:

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LLD/SCD.

• The instructions executed starting with the LLD and ending with the SCD do not lie in a 2048-byte contiguous r
of virtual memory. (The region does not have to be aligned, other than the alignment required for instruction

The following two conditions must be true or the result of the SCD is undefined:

• Execution of the SCD must be preceded by execution of an LLD instruction.

• An RMW sequence executed without intervening exceptions must use the same address in the LLD and SC
address is the same if the virtual address, physical address, and cache-coherence algorithm are identical.

31 26 25 21 20 16 15 0

SCD

111100
base rt offset

6 5 5 16

Store Conditional Doubleword SCD
442 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ec-

ero, an
Restrictions:

The 64-bit doubleword of registerrt is conditionally stored in memory at the location specified by the aligned eff
tive address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
datadoubleword ← GPR[rt]
if LLbit then

StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 0 63 || LLbit

Store Conditional Doubleword (cont.) SCD
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 443

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

xamples
require

n

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

Programming Notes:

LLD and SCD are used to atomically update memory locations, as shown below.

L1:
LLD T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SCD T2, (T0) # try to store,

checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LLD and SCD cause SCD to fail, so persistent exceptions must be avoided. Some e
of such exceptions are arithmetic operations that trap, system calls, and floating point operations that trap or
software emulation assistance.

LLD and SCD function on a single processor for cachednoncoherent memoryso that parallel programs can be run o
uniprocessor systems that do not supportcached coherent memory access types.

Store Conditional Doubleword (cont.) SCD
444 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

The

ess is
SDi

Format: SD rt, offset(base) MIPS64

Purpose:

To store a doubleword to memory

Description: memory[base+offset] ← rt

The 64-bit doubleword in GPRrt is stored in memory at the location specified by the aligned effective address.
16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the effective addr
non-zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
datadoubleword ← GPR[rt]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

31 26 25 21 20 16 15 0

SD

111111
base rt offset

6 5 5 16

Store Doubleword SD
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 445

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

be used
y load-
t used
SDBBP

Format: SDBBP code EJTAG

Purpose:

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. The code field can
for passing information to the debug exception handler, and is retrieved by the debug exception handler only b
ing the contents of the memory word containing the instruction, using the DEPC register. The CODE field is no
in any way by the hardware.

Restrictions:

None

Operation:

If Debug DM = 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:

Debug Breakpoint Exception

31 26 25 6 5 0

SPECIAL2

011100
code

SDBBP

111111

6 20 6

Software Debug Breakpoint SDBBP
446 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

The
SDC1

Format: SDC1 ft, offset(base) MIPS32

Purpose:

To store a doubleword from an FPR to memory

Description: memory[base+offset] ← ft

The 64-bit doubleword in FPRft is stored in memory at the location specified by the aligned effective address.
16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)
StoreMemory(CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SDC1

111101
base ft offset

6 5 5 16

Store Doubleword from Floating Point SDC1
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 447

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

c-
SDC2

Format: SDC2 rt, offset(base) MIPS32

Purpose:

To store a doubleword from a Coprocessor 2 register to memory

Description: memory[base+offset] ← rt

The 64-bit doubleword in Coprocessor 2 registerrt is stored in memory at the location specified by the aligned effe
tive address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← CPR[2,rt,0]
StoreMemory(CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SDC2

111110
base rt offset

6 5 5 16

Store Doubleword from Coprocessor 2 SDC2
448 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

rm an
g
ytes in
SDL

Format: SDL rt, offset(base) MIPS64

Purpose:

To store the most-significant part of a doubleword to an unaligned memory address

Description: memory[base+offset] ← Some_Bytes_From rt

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the most-significant of 8 consecutive bytes forming a doubleword(DW) in memory, starting at an arbitrary
byte boundary.

A part ofDW, the most-significant 1 to 8 bytes, is in the aligned doubleword containingEffAddr. The same number of
most-significant (left) bytes of GPRrt are stored into these bytes ofDW.

The figure below illustrates this operation for big-endian byte ordering. The 8 consecutive bytes in 2..9 fo
unaligned doubleword starting at location 2. A part ofDW, 6 bytes, is located in the aligned doubleword containin
the most-significant byte at 2. First, SDL stores the 6 most-significant bytes of the source register into these b
memory. Next, the complementary SDR instruction stores the remainder ofDW.

Figure 12-13 Unaligned Doubleword Store With SDL and SDR

31 26 25 21 20 16 15 0

SDL

101100
base rt offset

6 5 5 16

Doubleword at byte 2 in big-endian memory; each memory byte contains its own address

 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Memory

A B C D E F G H GPR 24

After executing

0 1 A B C D E F 8 9 10 ... SDL $24,2($0)

 Then after

0 1 A B C D E F G H 10 ... SDR $24,9($0)

Store Doubleword Left SDL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 449

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ithin an
e
d byte
The bytes stored from the source register to memory depend on both the offset of the effective address w
aligned doubleword—that is, the low 3 bits of the address (vAddr2..0)—and the current byte-ordering mode of th
processor (big- or little-endian). The figure below shows the bytes stored for every combination of offset an
ordering.

Figure 12-14 Bytes Stored by an SDL Instruction

Restrictions:

None

Initial Memory Contents and Byte Offsets Contents of

Source Registermost — significance — least

0 1 2 3 4 5 6 7 ←big-endian most — significance — least

i j k l m n o p A B C D E F G H

7 6 5 4 3 2 1 0 ←little-endian offset

Memory contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

A B C D E F G H 0 i j k l m n o A

i A B C D E F G 1 i j k l m n A B

i j A B C D E F 2 i j k l m A B C

i j k A B C D E 3 i j k l A B C D

i j k l A B C D 4 i j k A B C D E

i j k l m A B C 5 i j A B C D E F

i j k l m n A B 6 i A B C D E F G

i j k l m n o A 7 A B C D E F G H

Store Doubleword Left (cont.) SDL
450 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
If BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..3 || 0 3

endif
bytesel ← vAddr 2..0 xor BigEndianCPU 3

datadoubleword ← 0 56–8*bytesel || GPR[rt] 63..56–8*bytesel
StoreMemory (CCA, byte, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

Store Doubleword Left (cont.) SDL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 451

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

rm an
g

bytes in
SDR

Format: SDR rt, offset(base) MIPS64

Purpose:

To store the least-significant part of a doubleword to an unaligned memory address

Description: memory[base+offset] ← Some_Bytes_From rt

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the least-significant of 8 consecutive bytes forming a doubleword(DW) in memory, starting at an arbitrary
byte boundary.

A part ofDW, the least-significant 1 to 8 bytes, is in the aligned doubleword containingEffAddr. The same number of
least-significant (right) bytes of GPRrt are stored into these bytes ofDW.

The figure below illustrates this operation for big-endian byte ordering. The 8 consecutive bytes in 2..9 fo
unaligned doubleword starting at location 2. A part ofDW, 2 bytes, is located in the aligned doubleword containin
the least-significant byte at 9. First, SDR stores the 2 least-significant bytes of the source register into these
memory. Next, the complementary SDL stores the remainder ofDW.

Figure 12-15 Unaligned Doubleword Store With SDR and SDL

31 26 25 21 20 16 15 0

SDR

101101
base rt offset

6 5 5 16

Doubleword at byte 2 in memory, big-endian byte order, - each mem byte contains its address

 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Memory

A B C D E F G H GPR 24

After executing

0 1 2 3 4 5 6 7 G H 10 ... SDR $24,9($0)

Then after

0 1 A B C D E F G H 10 ... SDL $24,2($0)

Store Doubleword Right SDR
452 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ithin an
e
-order-
The bytes stored from the source register to memory depend on both the offset of the effective address w
aligned doubleword—that is, the low 3 bits of the address (vAddr2..0)—and the current byte ordering mode of th
processor (big- or little-endian). Figure 12-16 shows the bytes stored for every combination of offset and byte
ing.

Figure 12-16 Bytes Stored by an SDR Instruction

Restrictions:

None

Initial Memory contents and byte offsets Contents of

Source Registermost — significance — least

0 1 2 3 4 5 6 7 ←big--endian most — significance — least

i j k l m n o p A B C D E F G H

7 6 5 4 3 2 1 0 ←little-endian offset

Memory contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

H j k l m n o p 0 A B C D E F G H

G H k l m n o p 1 B C D E F G H p

F G H l m n o p 2 C D E F G H o p

E F G H m n o p 3 D E F G H n o p

D E F G H n o p 4 E F G H m n o p

C D E F G H o p 5 F G H l m n o p

B C D E F G H p 6 G H k l m n o p

A B C D E F G H 7 H j k l m n o p

Store Doubleword Right (cont.) SDR
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 453

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
If BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..3 || 0 3

endif
bytesel ← vAddr 1..0 xor BigEndianCPU 3

datadoubleword ← GPR[rt] 63–8*bytesel || 0 8*bytesel

StoreMemory (CCA, DOUBLEWORD-byte, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

Store Doubleword Right (cont.) SDR
454 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

The
SDXC1

Format: SDXC1 fs, index(base) MIPS64

Purpose:

To store a doubleword from an FPR to memory (GPR+GPR addressing)

Description: memory[base+index] ← fs

The 64-bit doubleword in FPRfs is stored in memory at the location specified by the aligned effective address.
contents of GPRindex and GPRbaseare added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)
StoreMemory(CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Coprocessor Unusable, Address Error, Reserved Instruction.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index fs

0

00000

SDXC1

001001

6 5 5 5 5 6

Store Doubleword Indexed from Floating Point SDXC1
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 455

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

c-

ddress
SH

Format: SH rt, offset(base) MIPS32

Purpose:

To store a halfword to memory

Description: memory[base+offset] ← rt

The least-significant 16-bit halfword of registerrt is stored in memory at the location specified by the aligned effe
tive address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr1 2..0 xor (ReverseEndian 2 || 0))
bytesel ← vAddr1 2..0 xor (BigEndianCPU 2 || 0)
datadoubleword ← GPR[rt] 63–8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SH
101001

base rt offset

6 5 5 16

Store Halfword SH
456 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

rd

word
ination

break on
SLL

Format: SLL rd, rt, sa MIPS32

Purpose:

To left-shift a word by a fixed number of bits

Description: rd ← rt << sa

The contents of the low-order 32-bit word of GPRrt are shifted left, inserting zeros into the emptied bits; the wo
result is sign-extended and placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

None

Operation:
s ← sa
temp ← GPR[rt] (31-s)..0 || 0 s

GPR[rd] ← sign_extend(temp)

Exceptions:

None

Programming Notes:

Unlike nearly all other word operations, the SLL input operand does not have to be a properly sign-extended
value to produce a valid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit dest
register; this instruction with a zero shift amount truncates a 64-bit value to 32 bits and sign-extends it.

SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL r0, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue
superscalar processors.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SLL

000000

6 5 5 5 5 6

Shift Word Left Logical SLL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 457

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ult

alue to
gister;
SLLV

Format: SLLV rd, rt, rs MIPS32

Purpose: To left-shift a word by a variable number of bits

Description: rd ← rt << rs

The contents of the low-order 32-bit word of GPRrt are shifted left, inserting zeros into the emptied bits; the res
word is sign-extended and placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions: None

Operation:
s ← GPR[rs] 4..0
temp ← GPR[rt] (31-s)..0 || 0 s

GPR[rd] ← sign_extend(temp)

Exceptions: None

Programming Notes:

Unlike nearly all other word operations, the input operand does not have to be a properly sign-extended word v
produce a valid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination re
this instruction with a zero shift amount truncates a 64-bit value to 32 bits and sign-extends it.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLLV

000100

6 5 5 5 5 6

Shift Word Left Logical Variable SLLV
458 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

n in
SLT

Format: SLT rd, rs, rt MIPS32

Purpose:

To record the result of a less-than comparison

Description: rd ← (rs < rt)

Compare the contents of GPRrs and GPRrt as signed integers and record the Boolean result of the compariso
GPRrd. If GPRrs is less than GPRrt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
GPR[rd] ← 0 GPRLEN-1 || 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLT

101010

6 5 5 5 5 6

Set on Less Than SLT
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 459

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

of
SLTI

Format: SLTI rt, rs, immediate MIPS32

Purpose:

To record the result of a less-than comparison with a constant

Description: rt ← (rs < immediate)

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers and record the Boolean result
the comparison in GPRrt. If GPRrs is less thanimmediate,the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
GPR[rd] ← 0 GPRLEN-1|| 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTI

001010
rs rt immediate

6 5 5 16

Set on Less Than Immediate SLTI
460 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

an

argest
-32767,
SLTIU

Format: SLTIU rt, rs, immediate MIPS32

Purpose:

To record the result of an unsigned less-than comparison with a constant

Description: rt ← (rs < immediate)

Compare the contents of GPRrs and the sign-extended 16-bitimmediateas unsigned integers and record the Boole
result of the comparison in GPRrt. If GPRrs is less thanimmediate, the result is 1 (true); otherwise, it is 0 (false).

Because the 16-bitimmediateis sign-extended before comparison, the instruction can represent the smallest or l
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned
max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPR[rd] ← 0 GPRLEN-1 || 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTIU

001011
rs rt immediate

6 5 5 16

Set on Less Than Immediate Unsigned SLTIU
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 461

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

n in
SLTU

Format: SLTU rd, rs, rt MIPS32

Purpose:

To record the result of an unsigned less-than comparison

Description: rd ← (rs < rt)

Compare the contents of GPRrs and GPRrt as unsigned integers and record the Boolean result of the compariso
GPRrd. If GPRrs is less than GPRrt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd] ← 0 GPRLEN-1 || 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLTU

101011

6 5 5 5 5 6

Set on Less Than Unsigned SLTU
462 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ing
SQRT.fmt

Format: SQRT.S fd, fs MIPS32
SQRT.D fd, fs MIPS32

Purpose:

To compute the square root of an FP value

Description: fd ← SQRT(fs)

The square root of the value in FPRfs is calculated to infinite precision, rounded according to the current round
mode inFCSR, and placed into FPRfd. The operand and result are values in formatfmt.

If the value in FPRfs corresponds to – 0, the result is – 0.

Restrictions:

If the value in FPRfs is less than 0, an Invalid Operation condition is raised.

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Inexact, Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

SQRT

000100

6 5 5 5 5 6

Floating Point Square Root SQRT.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 463

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

d

f the
SRA

Format: SRA rd, rt, sa MIPS32

Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits

Description: rd ← rt >> sa (arithmetic)

The contents of the low-order 32-bit word of GPRrt are shifted right, duplicating the sign-bit (bit 31) in the emptie
bits; the word result is sign-extended and placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

On 64-bit processors, if GPRrt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result o
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UndefinedResult()

endif
s ← sa
temp ← (GPR[rt] 31) s || GPR[rt] 31..s
GPR[rd] ← sign_extend(temp)

Exceptions: None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SRA

000011

6 5 5 5 5 6

Shift Word Right Arithmetic SRA
464 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

d
s

f the
SRAV

Format: SRAV rd, rt, rs MIPS32

Purpose:

To execute an arithmetic right-shift of a word by a variable number of bits

Description: rd ← rt >> rs (arithmetic)

The contents of the low-order 32-bit word of GPRrt are shifted right, duplicating the sign-bit (bit 31) in the emptie
bits; the word result is sign-extended and placed in GPRrd. The bit-shift amount is specified by the low-order 5 bit
of GPRrs.

Restrictions:

On 64-bit processors, if GPRrt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result o
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UndefinedResult()

endif
s ← GPR[rs] 4..0
temp ← (GPR[rt] 31) s || GPR[rt] 31..s
GPR[rd] ← sign_extend(temp)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SRAV

000111

6 5 5 5 5 6

Shift Word Right Arithmetic Variable SRAV
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 465

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

rd

f the
SRL

Format: SRL rd, rt, sa MIPS32

Purpose:

To execute a logical right-shift of a word by a fixed number of bits

Description: rd ← rt >> sa (logical)

The contents of the low-order 32-bit word of GPRrt are shifted right, inserting zeros into the emptied bits; the wo
result is sign-extended and placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

On 64-bit processors, if GPRrt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result o
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UndefinedResult()

endif
s ← sa
temp ← 0 s || GPR[rt] 31..s
GPR[rd] ← sign_extend(temp)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SRL

000010

6 5 5 5 5 6

Shift Word Right Logical SRL
466 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

rd

f the
SRLV

Format: SRLV rd, rt, rs MIPS32

Purpose:

To execute a logical right-shift of a word by a variable number of bits

Description: rd ← rt >> rs (logical)

The contents of the low-order 32-bit word of GPRrt are shifted right, inserting zeros into the emptied bits; the wo
result is sign-extended and placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions:

On 64-bit processors, if GPRrt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result o
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UndefinedResult()

endif
s ← GPR[rs] 4..0
temp ← 0 s || GPR[rt] 31..s
GPR[rd] ← sign_extend(temp)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SRLV

000110

6 5 5 5 5 6

Shift Word Right Logical Variable SRLV
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 467

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

d by the

ction to
SSNOP

ctions
ET, one
SSNOP

Format: SSNOP MIPS32

Purpose:

Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interprete
hardware as SLL r0, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instru
single-issue. The processor must then end the current instruction issue between the instruction previous to the
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On a single-issue processor, this instruction is a NOP that takes an issue slot.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

SSNOP is intended for use primarily to allow the programmer control over CP0 hazards by converting instru
into cycles in a superscalar processor. For example, to insert at least two cycles between an MTC0 and an ER
would use the following sequence:

mtc0 x,y
ssnop
ssnop
eret

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000

0

00000

0

00000

1

00001

SLL

000000

6 5 5 5 5 6

Superscalar No Operation SSNOP
468 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

n Inte-

hen
SUB

Format: SUB rd, rs, rt MIPS32

Purpose:

To subtract 32-bit integers. If overflow occurs, then trap

Description: rd ← rs - rt

The 32-bit word value in GPRrt is subtracted from the 32-bit value in GPRrs to produce a 32-bit result. If the sub-
traction results in 32-bit 2’s complement arithmetic overflow, then the destination register is not modified and a
ger Overflow exception occurs. If it does not overflow, the 32-bit result is sign-extended and placed into GPRrd.

Restrictions:

On 64-bit processors, if either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), t
the result of the operation isUNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UndefinedResult()

endif
temp ← (GPR[rs] 31||GPR[rs] 31..0) − (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← sign_extend(temp 31..0)
endif

Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUB

100010

6 5 5 5 5 6

Subtract Word SUB
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 469

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

-

SUB.fmt

[c

Format: SUB.S fd, fs, ft MIPS32
SUB.D fd, fs, ft MIPS32

Purpose:

To subtract FP values

Description: fd ← fs - ft

The value in FPRft is subtracted from the value in FPRfs. The result is calculated to infinite precision, rounded
according to the current rounding mode inFCSR, and placed into FPRfd. The operands and result are values in for
matfmt. Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of typefmt. If they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) – fmt ValueFPR(ft, fmt))

CPU Exceptions:

Coprocessor Unusable, Reserved Instruction

FPU Exceptions:

Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

SUB

000001

6 5 5 5 5 6

Floating Point Subtract SUB.fmt
470 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

hen

es not
viron-
SUBU

Format: SUBU rd, rs, rt MIPS32

Purpose:

To subtract 32-bit integers

Description: rd ← rs - rt

The 32-bit word value in GPRrt is subtracted from the 32-bit value in GPRrs and the 32-bit arithmetic result is
sign-extended and placed into GPRrd.

No integer overflow exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), t
the result of the operation isUNPREDICTABLE .

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UndefinedResult()

endif
temp ← GPR[rs] - GPR[rt]
GPR[rd] ← sign_extend(temp)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic en
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUBU

100011

6 5 5 5 5 6

Subtract Unsigned Word SUBU
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 471

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ss.
ble-
SUXC1

Format: SUXC1 fs, index(base) MIPS64

Purpose:

To store a doubleword from an FPR to memory (GPR+GPR addressing) ignoring alignment

Description: memory[(base+index) PSIZE-1..3] ← fs

The contents of the 64-bit doubleword in FPRfs is stored at the memory location specified by the effective addre
The contents of GPRindexand GPRbaseare added to form the effective address. The effective address is dou
word-aligned; EffectiveAddress2..0 are ignored.

Restrictions:

The result of this instruction is undefined if the processor is executing in 16 FP registers mode.

Operation:

vAddr ← (GPR[base]+GPR[index]) 63..3 || 0 3

(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_WORD) || 0 8*bytesel

StoreMemory(CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index fs

0

00000

SUXC1

001101

6 5 5 5 5 6

Store Doubleword Indexed Unaligned from Floating Point SUXC1
472 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ive

ero, an
SW

Format: SW rt, offset(base) MIPS32

Purpose:

To store a word to memory

Description: memory[base+offset] ← rt

The least-significant 32-bit word of registerrt is stored in memory at the location specified by the aligned effect
address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
datadoubleword ← GPR[rt] 63-8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SW

101011
base rt offset

6 5 5 16

Store Word SW
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 473

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

The
SWC1

Format: SWC1 ft, offset(base) MIPS32

Purpose:

To store a word from an FPR to memory

Description: memory[base+offset] ← ft

The low 32-bit word from FPRft is stored in memory at the location specified by the aligned effective address.
16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_WORD) || 0 8*bytesel

StoreMemory(CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SWC1

111001
base ft offset

6 5 5 16

Store Word from Floating Point SWC1
474 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

e

SWC2

Format: SWC2 rt, offset(base) MIPS32

Purpose:

To store a word from a COP2 register to memory

Description: memory[base+offset] ← ft

The low 32-bit word from COP2 (Coprocessor 2) registerrt is stored in memory at the location specified by th
aligned effective address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
datadoubleword ← CPR[2,rt,0] 63-8*bytesel..0 || 0 8*bytesel

StoreMemory(CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SWC2

111010
base rt offset

6 5 5 16

Store Word from Coprocessor 2 SWC2
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 475

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

he 4

from
aligned

ithin an
or
ering.
SWL

Format: SWL rt, offset(base) MIPS32

Purpose:

To store the most-significant part of a word to an unaligned memory address

Description: memory[base+offset] ← rt

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word containingEffAddr. The same number of the
most-significant (left) bytes from the word in GPRrt are stored into these bytes ofW.

If GPR rt is a 64-bit register, the source word is the low word of the register.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. T
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is located in the aligned
word containing the most-significant byte at 2. First, SWL stores the most-significant 2 bytes of the low word
the source register into these 2 bytes in memory. Next, the complementary SWR stores the remainder of the un
word.

Figure 12-17 Unaligned Word Store Using SWL and SWR

The bytes stored from the source register to memory depend on both the offset of the effective address w
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the process
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ord

31 26 25 21 20 16 15 0

SWL

101010
base rt offset

6 5 5 16

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address

most — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

GPR 24 A B C D E F G H

0 1 E F 4 5 6 ... After executingSWL $24,2($0)

0 1 E F G H 6 ... Then afterSWR $24,5($0)

Store Word Left SWL
476 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
Figure 12-18 Bytes Stored by an SWL Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
If BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

if (vAddr 2 xor BigEndianCPU) = 0 then
datadoubleword ← 0 32 || 0 24-8*byte || GPR[rt] 31..24-8*byte

else
datadoubleword ← 0 24-8*byte || GPR[rt] 31..24-8*byte || 0 32

endif

StoreMemory(CCA, byte, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian 64-bit register

i j k l offset (vAddr1..0) A B C D E F G H

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering vAddr1..0

Little-endian
byte ordering

E F G H 0 i j k E

i E F G 1 i j E F

i j E F 2 i E F G

i j k E 3 E F G H

Store Word Left (cont.) SWL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 477

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

he 4

word
r of the
SWR

Format: SWR rt, offset(base) MIPS32

Purpose:

To store the least-significant part of a word to an unaligned memory address

Description: memory[base+offset] ← rt

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containingEffAddr. The same number of the
least-significant (right) bytes from the word in GPRrt are stored into these bytes ofW.

If GPR rt is a 64-bit register, the source word is the low word of the register.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. T
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low
from the source register into these 2 bytes in memory. Next, the complementary SWL stores the remainde
unaligned word.

Figure 12-19 Unaligned Word Store Using SWR and SWL

31 26 25 21 20 16 15 0

SWR

101110
base rt offset

6 5 5 16

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address

least — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

GPR 24 A B C D E F G H

0 1 2 3 G H 6 ... After executingSWR $24,5($0)

0 1 E F G H 6 ... Then afterSWL $24,2($0)

Store Word Right SWR
478 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ithin an
or
ering.
The bytes stored from the source register to memory depend on both the offset of the effective address w
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the process
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ord

Figure 12-20 Bytes Stored by SWR Instruction

Restrictions:

None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor ReverseEndian 3)
If BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

if (vAddr 2 xor BigEndianCPU) = 0 then
datadoubleword ← 0 32 || GPR[rt] 31-8*byte..0 || 0 8*byte

else
datadoubleword ← GPR[rt] 31-8*byte..0 || 0 8*byte || 0 32

endif

StoreMemory(CCA, WORD-byte, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ← big-endian 64-bit register

i j k l offset (vAddr1..0) A B C D E F G H

3 2 1 0 ← little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering vAddr1..0

Little-endian byte
ordering

H j k l 0 E F G H

G H k l 1 F G H l

F G H l 2 G H k l

E F G H 3 H j k l

Store Word Right (cont.) SWR
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 479

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

The
SWXC1

Format: SWXC1 fs, index(base) MIPS64

Purpose:

To store a word from an FPR to memory (GPR+GPR addressing)

Description: memory[base+index] ← fs

The low 32-bit word from FPRfs is stored in memory at the location specified by the aligned effective address.
contents of GPRindex and GPRbaseare added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr 1..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..3 || (pAddr 2..0 xor (ReverseEndian || 0 2))
bytesel ← vAddr 2..0 xor (BigEndianCPU || 0 2)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_WORD) || 0 8*bytesel

StoreMemory(CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index fs

0

00000

SWXC1

001000

6 5 5 5 5 6

Store Word Indexed from Floating Point SWXC1
480 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

NC

isible to

ible
SYNC

Format: SYNC (stype = 0 implied) MIPS32

Purpose:

To order loads and stores.

Description:

Simple Description:

• SYNC affects onlyuncachedandcached coherentloads and stores. The loads and stores that occur before the SY
must be completed before the loads and stores after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is v
every other processor in the system.

• SYNC is required, potentially in conjunction with SSNOP, to guarantee that memory reference results are vis
across operating mode changes. For example, a SYNC is required on entry to and exit from Debug Mode to
guarantee that memory affects are handled correctly.

Detailed Description:

• SYNC does not guarantee the order in which instruction fetches are performed. Thestype values 1-31 are reserved;
they produce the same result as the value zero.

• The SYNC instruction stalls until all loads, stores, refills are completed and all write buffers are empty.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000 0000 0
stype

SYNC

001111

6 15 5 6

Synchronize Shared Memory SYNC
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 481

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other thanuncachedandcached
coherent is UNPREDICTABLE .

Operation:
SyncOperation(stype)

Exceptions:

None

Synchronize Shared Memory (cont.) SYNC
482 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

.

ading
SYSCALL

Format: SYSCALL MIPS32

Purpose:

To cause a System Call exception

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler

Thecodefield is available for use as software parameters, but is retrieved by the exception handler only by lo
the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(SystemCall)

Exceptions:

System Call

31 26 25 6 5 0

SPECIAL

000000
code

SYSCALL

001100

6 20 6

System Call SYSCALL
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 483

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ware.
TEQ

Format: TEQ rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs = rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is equal to GPRrt, then take a Trap excep-
tion.

The contents of thecodefield are ignored by hardware and may be used to encode information for system soft
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] = GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TEQ

110100

6 5 5 10 6

Trap if Equal TEQ
484 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
TEQI

Format: TEQI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs = immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is equal toimmediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] = sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TEQI

01100
immediate

6 5 5 16

Trap if Equal Immediate TEQI
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 485

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ware.
TGE

Format: TGE rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs ≥ rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is greater than or equal to GPRrt, then take
a Trap exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system soft
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≥ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TGE

110000

6 5 5 10 6

Trap if Greater or Equal TGE
486 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set
TGEI

Format: TGEI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs ≥ immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is greater than or equal
to immediate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≥ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TGEI

01000
immediate

6 5 5 16

Trap if Greater or Equal Immediate TGEI
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 487

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

argest
-32767,
TGEIU

Format: TGEIU rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs ≥ immediate then Trap

Compare the contents of GPRrs and the 16-bit sign-extendedimmediateas unsigned integers; if GPRrs is greater
than or equal toimmediate, then take a Trap exception.

Because the 16-bitimmediateis sign-extended before comparison, the instruction can represent the smallest or l
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TGEIU

01001
immediate

6 5 5 16

Trap if Greater or Equal Immediate Unsigned TGEIU
488 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ware.
TGEU

Format: TGEU rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs ≥ rt then Trap

Compare the contents of GPRrs and GPRrt as unsigned integers; if GPRrs is greater than or equal to GPRrt, then
take a Trap exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system soft
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TGEU

110001

6 5 5 10 6

Trap if Greater or Equal Unsigned TGEU
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 489

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
TLBP

Format: TLBP MIPS32

Purpose:

To find a matching entry in the TLB.

Description:

TheIndexregister is loaded with the address of the TLB entry whose contents match the contents of theEntryHi reg-
ister. If no TLB entry matches, the high-order bit of theIndex register is set.

Restrictions:

None

Operation:

Index ← 1 || UNPREDICTABLE31

for i in 0...TLBEntries-1
if ((TLB[i] VPN2 and not (TLB[i] Mask)) =

(EntryHi VPN2 and not (TLB[i] Mask))) and
(TLB[i] R = EntryHi R) and
((TLB[i] G = 1) or (TLB[i] ASID = EntryHi ASID)) then
Index ← i

endif
endfor

Exceptions:

Coprocessor Unusable

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBP

001000

6 1 19 6

Probe TLB for Matching Entry TLBP
490 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

to

TLB
TLBR

Format: TLBR MIPS32

Purpose:

To read an entry from the TLB.

Description:

TheEntryHi, EntryLo0, EntryLo1, andPageMaskregisters are loaded with the contents of the TLB entry pointed
by the Index register. Note that the value written to theEntryHi, EntryLo0, andEntryLo1registers may be different
from that originally written to the TLB via these registers in that:

• The value returned in the G bit in both theEntryLo0 andEntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits inEntryLo0 andEntryLo1 when
the TLB was written.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBR

000001

6 1 19 6

Read Indexed TLB Entry TLBR
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 491

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Operation:

i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
PageMaskMask ← TLB[i] Mask
EntryHi ← TLB[i] R || 0 Fill ||

TLB[i] VPN2 ||
05 || TLB[i] ASID

EntryLo1 ← 0 Fill ||
TLB[i] PFN1 ||
TLB[i] C1 || TLB[i] D1 || TLB[i] V1 || TLB[i] G

EntryLo0 ← 0 Fill ||
TLB[i] PFN0 ||
TLB[i] C0 || TLB[i] D0 || TLB[i] V0 || TLB[i] G

Exceptions:

Coprocessor Unusable

Read Indexed TLB Entry TLBR
492 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

TLB
TLBWI

Format: TLBWI MIPS32

Purpose:

To write a TLB entry indexed by theIndex register.

Description:

The TLB entry pointed to by the Index register is written from the contents of theEntryHi, EntryLo0, EntryLo1, and
PageMaskregisters. The information written to the TLB entry may be different from that in theEntryHi, EntryLo0,
andEntryLo1 registers, in that:

• The single G bit in the TLB entry is set from the logical AND of the G bits in theEntryLo0 andEntryLo1
registers.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBWI

000010

6 1 19 6

Write Indexed TLB Entry TLBWI
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 493

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Operation:

i ← Index
TLB[i] Mask ← PageMaskMask
TLB[i] R ← EntryHi R
TLB[i] VPN2 ← EntryHi VPN2
TLB[i] ASID ← EntryHi ASID
TLB[i] G ← EntryLo1 G and EntryLo0 G
TLB[i] PFN1 ← EntryLo1 PFN
TLB[i] C1 ← EntryLo1 C
TLB[i] D1 ← EntryLo1 D
TLB[i] V1 ← EntryLo1 V
TLB[i] PFN0 ← EntryLo0 PFN
TLB[i] C0 ← EntryLo0 C
TLB[i] D0 ← EntryLo0 D
TLB[i] V0 ← EntryLo0 V

Exceptions:

Coprocessor Unusable

Write Indexed TLB Entry TLBWI
494 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

TLB
TLBWR

Format: TLBWR MIPS32

Purpose:

To write a TLB entry indexed by theRandom register.

Description:

The TLB entry pointed to by theRandomregister is written from the contents of theEntryHi, EntryLo0, EntryLo1,
and PageMaskregisters. The information written to the TLB entry may be different from that in theEntryHi,
EntryLo0, andEntryLo1 registers, in that:

• The value returned in the G bit in both theEntryLo0 andEntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits inEntryLo0 andEntryLo1 when
the TLB was written.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBWR

000110

6 1 19 6

Write Random TLB Entry TLBWR
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 495

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Operation:

i ← Random
TLB[i] Mask ← PageMaskMask
TLB[i] R ← EntryHi R
TLB[i] VPN2 ← EntryHi VPN2
TLB[i] ASID ← EntryHi ASID
TLB[i] G ← EntryLo1 G and EntryLo0 G
TLB[i] PFN1 ← EntryLo1 PFN
TLB[i] C1 ← EntryLo1 C
TLB[i] D1 ← EntryLo1 D
TLB[i] V1 ← EntryLo1 V
TLB[i] PFN0 ← EntryLo0 PFN
TLB[i] C0 ← EntryLo0 C
TLB[i] D0 ← EntryLo0 D
TLB[i] V0 ← EntryLo0 V

Exceptions:

Coprocessor Unusable

Write Random TLB Entry TLBWR
496 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ware.
TLT

Format: TLT rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs < rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is less than GPRrt, then take a Trap excep-
tion.

The contents of thecodefield are ignored by hardware and may be used to encode information for system soft
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TLT

110010

6 5 5 10 6

Trap if Less Than TLT
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 497

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
TLTI

Format: TLTI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs < immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is less thanimmediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TLTI

01010
immediate

6 5 5 16

Trap if Less Than Immediate TLTI
498 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

argest
-32767,
TLTIU

Format: TLTIU rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs < immediate then Trap

Compare the contents of GPRrs and the 16-bit sign-extendedimmediateas unsigned integers; if GPRrs is less than
immediate, then take a Trap exception.

Because the 16-bitimmediateis sign-extended before comparison, the instruction can represent the smallest or l
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TLTIU

01011
immediate

6 5 5 16

Trap if Less Than Immediate Unsigned TLTIU
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 499

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions

ware.
TLTU

Format: TLTU rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs < rt then Trap

Compare the contents of GPRrs and GPRrt as unsigned integers; if GPRrs is less than GPRrt, then take a Trap
exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system soft
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TLTU

110011

6 5 5 10 6

Trap if Less Than Unsigned TLTU
500 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ware.
TNE

Format: TNE rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: i f rs ≠ rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is not equal to GPRrt, then take a Trap
exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system soft
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≠ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TNE

110110

6 5 5 10 6

Trap if Not Equal TNE
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 501

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
TNEI

Format: TNEI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs ≠ immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is not equal toimme-
diate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≠ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TNEI

01110
immediate

6 5 5 16

Trap if Not Equal TNEI
502 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ero

set in
TRUNC.L.fmt

Format: TRUNC.L.S fd, fs MIPS64
TRUNC.L.D fd, fs MIPS64

Purpose:

To convert an FP value to 64-bit fixed point, rounding toward zero

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward z
(rounding mode 1). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is
theFCSR. If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 263-1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for long fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

TRUNC.L

001001

6 5 5 5 5 6

Floating Point Truncate to Long Fixed Point TRUNC.L.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 503

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Overflow, Inexact

Floating Point Truncate to Long Fixed Point (cont.) TRUNC.L.fmt
504 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

rd

set in
TRUNC.W.fmt

Format: TRUNC.W.S fd, fs MIPS32
TRUNC.W.D fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point, rounding toward zero

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 32-bit word fixed point format using rounding towa
zero (rounding mode 1). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is
theFCSR. If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for word fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

TRUNC.W

001101

6 5 5 5 5 6

Floating Point Truncate to Word Fixed Point TRUNC.W.fmt
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 505

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Overflow, Unimplemented Operation

Floating Point Truncate to Word Fixed Point (cont.) TRUNC.W.fmt
506 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

ts are
eset) is
e the

a

ns after
WAIT

Format: WAIT MIPS32

Purpose:

Wait for Event

Description:

The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all external reques
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset or SI_ColdR
signaled, or a non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that the 5K cores do not us
code field in this instruction.

Restrictions:

The operation of the processor isUNDEFINED if a WAIT instruction is placed in the delay slot of a branch or
jump.

In order to ensure that the clocks are stopped no coprocessor instructions must be placed within four instructio
the WAIT instruction.

31 26 25 24 6 5 0

COP0

010000

CO

1
Implementation-Dependent Code

WAIT

100000

6 1 19 6

Enter Standby Mode WAIT
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 507

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
Operation:

Enter lower power mode

Exceptions:

Coprocessor Unusable Exception

Enter Standby Mode (cont.) WAIT
508 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

12.5 Instruction Set

to
XOR

Format: XOR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical Exclusive OR

Description: rd ← rs XOR rt

Combine the contents of GPRrs and GPRrt in a bitwise logical Exclusive OR operation and place the result in
GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] xor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

XOR

100110

6 5 5 5 5 6

Exclusive OR XOR
MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 509

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Chapter 12 Instructions
XORI

Format: XORI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical Exclusive OR with a constant

Description: rt ← rs XOR immediate

Combine the contents of GPRrs and the 16-bit zero-extendedimmediatein a bitwise logical Exclusive OR operation
and place the result into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] xor zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

XORI

001110
rs rt immediate

6 5 5 16

Exclusive OR Immediate XORI
510 MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

MIPS64™ 5K™ Processor Core Family Software User’s Manual, Revision 02.08 511

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Appendix A

Revision History

Revision Date Description

02.04 January 15, 2001 Major update & release.

02.05 March 30, 2001 Changes for preliminar FPU instruction and register description

02.06 June 28, 2001 Update with EJTAG Fastdata feature.

Added information about Floating-Point Unit featues in 5Kf core.

Minor updates.

02.07 August 31, 2001 Update with Simple BE feature.

Minor updates.

02.08 May 28, 2002 Fixed typos in section 2.4 Limited Dual Issue.

Repeat Rates updated and updates in general to chapter 3, Floating-Point Unit.

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	1.1� Overview
	1.2� Features
	1.3� Core Block Diagram
	1.3.1� Execution Unit
	1.3.2� Floating Point Unit (FPU) / Coprocessor 1 (5Kf core only)
	1.3.3� Multiply/Divide Unit (MDU)
	1.3.4� System Control Coprocessor (CP0)
	1.3.5� Memory Management Unit (MMU)
	1.3.6� Cache Controllers & Bus Interface
	1.3.7� Power Management
	1.3.8� Instruction and Data Caches
	1.3.9� EJTAG Debug Support

	Pipeline
	2.1� Pipeline Stages
	2.1.1� I Stage: Instruction Fetch
	2.1.2� D Stage: Instruction Dispatch
	2.1.3� R Stage: Register File Read
	2.1.4� E Stage: Execution
	2.1.5� M Stage: Memory Access
	2.1.6� W Stage: Writeback

	2.2� Instruction Fetch
	2.3� Branch Delay
	2.4� Limited Dual Issue
	2.5� Instruction Fetching from Uncached Memory Space
	2.6� Data Access
	2.7� Instruction Scheduling
	2.8� MDU Pipeline
	2.8.1� Multiply/MAC Operations
	2.8.2� Divide Operations
	2.8.3� Latencies and Repeat Rates
	2.8.4� MDU Interaction with Integer Unit Pipeline

	2.9� Slip Conditions and Interlock Handling

	Floating-Point Unit
	3.1� Features Overview
	3.1.1� IEEE Standard 754

	3.2� Enabling the Floating-Point Coprocessor
	3.3� Data Formats
	3.3.1� Floating-Point Formats
	3.3.1.1� Normalized and Denormalized Numbers
	3.3.1.2� Reserved Operand Values—Infinity and NaN
	3.3.1.3� Infinity and Beyond
	3.3.1.4� Signalling Non-Number (SNaN)
	3.3.1.5� Quiet Non-Number (QNaN)

	3.3.2� Fixed-Point Formats

	3.4� Floating-Point General Registers
	3.4.1� FPRs and Formatted Operand Layout
	3.4.2� Formats of Values Used in FP Registers
	3.4.3� Binary Data Transfers (32-Bit and 64-Bit)

	3.5� Floating-Point Control Registers
	3.5.1� Floating-Point Implementation Register (FIR, CP1 Control Register 0)
	3.5.2� Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)
	3.5.3� Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)
	3.5.4� Floating-Point Enables Register (FENR, CP1 Control Register 28)
	3.5.5� Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)
	3.5.6� Operation of the FS/FO/FN Bits
	3.5.6.1� Flush To Zero Bit
	3.5.6.2� Flush Override Bit
	3.5.6.3� Flush to Nearest
	3.5.6.4� Recommended FS/FO/FN Settings

	3.5.7� FCSR Cause Bit Update Flow
	3.5.7.1� Exceptions Triggered by CTC1
	3.5.7.2� Generic Flow
	3.5.7.3� Multiply-Add Flow
	3.5.7.4� Cause Update Flow for Input Operands
	3.5.7.5� Cause Update Flow for Unimplemented Operations

	3.6� Instruction Overview
	3.6.1� Data Transfer Instructions
	3.6.1.1� Data Alignment in Loads, Stores, and Moves
	3.6.1.2� Addressing Used in Data Transfer Instructions

	3.6.2� Arithmetic Instructions
	3.6.3� Conversion Instructions
	3.6.4� Formatted Operand-Value Move Instructions
	3.6.5� Conditional Branch Instructions
	3.6.6� Miscellaneous Instructions

	3.7� Exceptions
	3.7.1� Precise Exception Mode
	3.7.2� Exception Conditions
	3.7.2.1� Invalid Operation Exception
	3.7.2.2� Division By Zero Exception
	3.7.2.3� Underflow Exception
	3.7.2.4� Overflow Exception
	3.7.2.5� Inexact Exception
	3.7.2.6� Unimplemented Operation Exception

	3.8� Pipeline and Performance
	3.8.1� Pipeline Overview
	3.8.1.1� FR Stage - Decode, Register Read, and Unpack
	3.8.1.2� M1 Stage - Multiply Tree
	3.8.1.3� M2 Stage - Multiply Complete
	3.8.1.4� A1 Stage - Addition First Step
	3.8.1.5� A2 Stage - Addition Second and Final Step
	3.8.1.6� FP Stage - Result Pack
	3.8.1.7� FW Stage - Register Write

	3.8.2� Bypassing
	3.8.3� Repeat Rate and Latency

	Memory Management
	4.1� Introduction
	4.2� TLB Organization
	4.2.1� PageMask Field
	4.2.2� ASID, GLOBAL, and R Bits
	4.2.3� Dirty Bit
	4.2.4� Cache/Coherency Attributes

	4.3� Address Translation
	4.4� TLB Implementation Details
	4.5� TLB Management Instructions
	4.5.1� TLBWI - TLB Write Indexed
	4.5.2� TLBWR - TLB Write Random
	4.5.3� TLBP - TLB Probe
	4.5.4� TLBR - TLB Read Indexed

	4.6� TLB Exceptions
	4.6.1� TLB Refill Exception
	4.6.2� TLB Invalid Exception
	4.6.3� TLB Modified Exception
	4.6.4� Machine Check (TLB Shutdown)

	4.7� TLB Memory Maps
	4.7.1� Access Control as a Function of Address and Operating Mode
	4.7.2� Address Translation and Cache Coherency Attributes for kseg0 and kseg1
	4.7.3� Address Translation and Cache Coherency Attributes for xkphys
	4.7.4� Address Translation for kuseg when StatusERL = 1
	4.7.5� Address Translation in Debug Mode

	4.8� FMT Memory Maps
	4.8.1� User Mode (useg/suseg/kuseg)
	4.8.2� Supervisor Mode (sseg)
	4.8.3� Kernel Mode (kseg0, kseg1 and kseg3)
	4.8.4� Debug Mode

	Exception Processing
	5.1� Overview
	5.1.1� Interrupt and NMI Latency
	5.1.2� Exception Vector Locations
	5.1.3� EPC, ErrorEPC, and DEPC Values
	5.1.4� General Exception Processing

	5.2� Reset Exception
	5.3� Soft Reset Exception
	5.4� Non-maskable Interrupt (NMI) Exception
	5.5� Machine Check Exception
	5.6� Address Error Exception
	5.7� TLB and XTLB Refill Exceptions
	5.8� TLB Invalid Exception
	5.9� TLB Modified Exception
	5.10� Cache Error Exception
	5.11� Bus Error Exception
	5.12� Integer Overflow Exception
	5.13� Trap Exception
	5.14� System Call Exception
	5.15� Breakpoint Exception
	5.16� Reserved Instruction Exception
	5.17� Coprocessor Unusable Exception
	5.18� MDMX Coprocessor Unusable Exception
	5.19� Floating-Point Exception
	5.20� Coprocessor 2 Exception
	5.21� Watch Exception
	5.22� Interrupt Exception
	5.23� Debug Exceptions
	5.23.1� Exception Handling of Debug Exceptions
	5.23.2� Debug Breakpoint Exception
	5.23.3� Debug Instruction Break Exception
	5.23.4� Debug Data Break Load/Store Exception
	5.23.5� Debug Data Break Load Imprecise Exception
	5.23.6� Debug Single Step Exception
	5.23.7� Debug Interrupt Exception
	5.23.8� Handling of Exceptions in Debug Mode
	5.23.9� EJTAG Boot

	Coprocessor 0 Registers
	6.1� Index Register (CP0 Register 0, Select 0)
	6.2� Random Register (CP0 Register 1, Select 0)
	6.3� EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	6.4� Context Register (CP0 Register 4, Select 0)
	6.5� PageMask Register (CP0 Register 5, Select 0)
	6.6� Wired Register (CP0 Register 6, Select 0)
	6.7� BadVAddr Register (CP0 Register 8, Select 0)
	6.8� Count Register (CP0 Register 9, Select 0)
	6.9� EntryHi Register (CP0 Register 10, Select 0)
	6.10� Compare Register (CP0 Register 11, Select 0)
	6.11� Status Register (CP Register 12, Select 0)
	6.12� Cause Register (CP0 Register 13, Select 0)
	6.13� Exception Program Counter (CP0 Register 14, Select 0)
	6.14� Processor Identification (CP0 Register 15, Select 0)
	6.15� Configuration Register (CP0 Register 16, Select 0)
	6.16� Configuration Register 1 (CP0 Register 16, Select 1)
	6.17� WatchLo Register (CP0 Register 18)
	6.18� WatchHi Register (CP0 Register 19)
	6.19� XContext Register (CP0 Register 20, Select 0)
	6.20� Debug Register (CP0 Register 23, Select 0)
	6.21� Debug Exception Program Counter Register (CP0 Register 24, Select 0)
	6.22� Performance Counter Register (CP0 Register 25, select 0-3)
	6.23� ErrCtl Register (CP0 Register 26, Select 0)
	6.24� CacheErr Register (CP0 Register 27, Select 0)
	6.25� TagLo Register (CP0 Register 28, Select 0)
	6.26� DataLo Register (CP0 Register 28, Select 1)
	6.27� TagHi Register (CP0 Register 29, Select 0)
	6.28� DataHi Register (CP0 Register 29, Select 1)
	6.29� ErrorEPC (CP0 Register 30, Select 0)
	6.30� Debug Exception SAVE (DESAVE) (CP0 register 31)

	Hardware and Software Initialization
	7.1� Hardware-Initialized Processor State
	7.1.1� Coprocessor 0 State
	7.1.2� TLB Initialization
	7.1.3� Bus State Machines
	7.1.4� Static Configuration Inputs
	7.1.5� Fetch Address

	7.2� Software-Initialized Processor State
	7.2.1� Coprocessor 0 Registers
	7.2.2� Register File
	7.2.3� TLB
	7.2.4� Caches

	Cache Organization and Operation
	8.1� Introduction
	8.2� Cache Organization
	8.2.1� Instruction Cache Access
	8.2.2� Data Cache Access

	8.3� Cache Write Policies
	8.3.1� Write Through, No Write Allocate
	8.3.2� Write Through, Write Allocate
	8.3.3� Write Back, Write Allocate
	8.3.4� Uncached

	8.4� Cached Loads and Fetches
	8.5� Uncached Loads and Fetches
	8.6� Way Selection Algorithm
	8.7� Write Buffer
	8.8� Read Buffer
	8.9� Transaction Priority
	8.10� CACHE Instruction
	8.11� PREF and PREFX Instructions
	8.12� Error Handling
	8.12.1� Parity
	8.12.2� WS Field Error
	8.12.3� Bus Errors

	Power Management
	9.1� Register-Controlled Power Management
	9.2� Instruction-Controlled Power Management

	EJTAG Debug Features
	10.1� Introduction
	10.1.1� EJTAG Components and Options
	10.1.1.1� EJTAG Extensions to the MIPS Processor
	10.1.1.2� Debug Control Register
	10.1.1.3� Hardware Breakpoint Unit
	10.1.1.4� EJTAG Test Access Port

	10.1.2� Register and Memory Map Overview
	10.1.2.1� Coprocessor 0 Register
	10.1.2.2� Memory-Mapped EJTAG Register
	10.1.2.3� Memory-Mapped EJTAG Memory
	10.1.2.4� EJTAG Test Access Port Registers

	10.1.3� Register Field Notations

	10.2� EJTAG Processor Extensions
	10.2.1� Debug Exceptions
	10.2.2� Debug Mode Execution
	10.2.3� Debug Mode Handling of Processor Resources
	10.2.3.1� Debug Mode Instruction Set
	10.2.3.2� Debug Mode Exceptions
	10.2.3.3� Coprocessors
	10.2.3.4� Random Register
	10.2.3.5� Count Register
	10.2.3.6� WatchLo/WatchHi Registers
	10.2.3.7� Load Linked (LL/LLD) and Store Conditional (SC/SCD) Instruction Pair
	10.2.3.8� SYNC Instruction Behavior Related to EJTAG Debug
	10.2.3.9� CP0 and dseg Hazards

	10.2.4� EJTAG Coprocessor 0 Registers
	10.2.5� Debug Mode Address Space
	10.2.5.1� Access to dmseg (EJTAG memory) Address Range
	10.2.5.2� Access to drseg (EJTAG Registers) Address Range

	10.2.6� Interrupts and NMIs
	10.2.6.1� Interrupts
	10.2.6.2� NMIs

	10.2.7� Reset and Soft Reset of Processor
	10.2.7.1� EJTAGBOOT Feature
	10.2.7.2� Processor Reset by Probe through Test Access Port
	10.2.7.3� Reset Occurred Indication through Test Access Port
	10.2.7.4� Soft Reset Enable
	10.2.7.5� Reset of Other Debug Features

	10.3� Debug Control Register
	10.4� Hardware Breakpoints
	10.4.1� Introduction
	10.4.1.1� Instruction Breakpoint Overview
	10.4.1.2� Data Breakpoint Features

	10.4.2� Overview of Instruction and Data Breakpoint Registers
	10.4.2.1� Instruction Breakpoint Register Summary
	10.4.2.2� Data Breakpoint Register Summary

	10.4.3� Conditions for Matching Breakpoints
	10.4.3.1� Conditions for Matching Instruction Breakpoints
	10.4.3.2� Conditions for Matching Data Breakpoints

	10.4.4� Debug Exceptions from Breakpoints
	10.4.4.1� Debug Exception Caused by Instruction Breakpoint
	10.4.4.2� Precise Debug Exception Caused by Data Breakpoint
	10.4.4.3� Imprecise Debug Exception Caused by Data Breakpoint

	10.4.5� Breakpoints Used as Triggerpoints
	10.4.6� Instruction Breakpoint Registers
	10.4.6.1� Instruction Breakpoint Status (IBS) Register
	10.4.6.2� Instruction Breakpoint Address n (IBAn) Register
	10.4.6.3� Instruction Breakpoint Address Mask n (IBMn) Register
	10.4.6.4� Instruction Breakpoint ASID n (IBASIDn) Register
	10.4.6.5� Instruction Breakpoint Control n (IBCn) Register

	10.4.7� Data Breakpoint Registers
	10.4.7.1� Data Breakpoint Status (DBS) Register
	10.4.7.2� Data Breakpoint Address n (DBAn) Register
	10.4.7.3� Data Breakpoint Address Mask n (DBMn) Register
	10.4.7.4� Data Breakpoint ASID n (DBASIDn) Register
	10.4.7.5� Data Breakpoint Control n (DBCn) Register
	10.4.7.6� Data Breakpoint Value n (DBVn) Register

	10.5� EJTAG Test Access Port
	10.5.1� Instruction Register and Special Instructions
	10.5.1.1� ALL Instruction
	10.5.1.2� FASTDATA Instruction
	10.5.1.3� EJTAGBOOT and NORMALBOOT Instructions

	10.5.2� TAP Data Registers
	10.5.2.1� Device Identification (ID) Register (TAP Instruction IDCODE)
	10.5.2.2� Implementation Register (TAP Instruction IMPCODE)
	10.5.2.3� Data Register (TAP Instruction DATA, FASTDATA or ALL)
	10.5.2.4� Address Register (TAP Instruction ADDRESS or ALL)
	10.5.2.5� EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)
	10.5.2.6� Fastdata Register (TAP Instruction FASTDATA)
	10.5.2.7� Bypass Register (TAP Instruction BYPASS, EJTAGBOOT, NORMALBOOT, or Unused)

	10.5.3� Example of EJTAG Memory Access through Processor Access
	10.5.3.1� Write Processor Access
	10.5.3.2� Read Processor Access

	Instruction Set Overview
	11.1� CPU Instruction Formats
	11.2� Load and Store Instructions
	11.2.1� Scheduling a Load Delay Slot
	11.2.2� Access Types

	11.3� Computational Instructions
	11.3.1� Cycle Timing for Multiply and Divide Instructions

	11.4� Jump and Branch Instructions
	11.4.1� Jump Instructions
	11.4.2� Branch Instructions

	11.5� Control Instructions
	11.6� Coprocessor Instructions
	11.7� Enhancements to the MIPS Architecture
	11.7.1� CLO - Count Leading Ones
	11.7.2� DCLO - Double Count Leading Ones
	11.7.3� CLZ - Count Leading Zeros
	11.7.4� DCLZ - Double Count Leading Zeros
	11.7.5� MADD - Multiply and Add Word
	11.7.6� MADDU - Multiply and Add Unsigned Word
	11.7.7� MSUB - Multiply and Subtract Word
	11.7.8� MSUBU - Multiply and Subtract Unsigned Word
	11.7.9� MUL - Multiply Word

	Instructions
	12.1� Example Instruction Page
	12.1.1� Instruction Descriptive Name and Mnemonic
	12.1.2� Instruction Fields
	12.1.3� Format Field
	12.1.4� Purpose Field
	12.1.5� Description Field
	12.1.6� Restrictions Field
	12.1.7� Operation Field
	12.1.8� Exceptions Field

	12.2� Coprocessor 0 (CP0) Hazards
	12.2.1� Hazards on CACHE Instructions Modifying Instruction Cache Contents

	12.3� Instruction Summary
	12.3.1� Basic Instructions
	12.3.2� FPU Instructions

	12.4� Instruction Bit Encodings
	12.5� Instruction Set

	Revision History

